Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Uncover New Class of Non-Protein Coding Genes in Mammals with Key Functions

03.02.2009
Researchers have uncovered a vast new class of previously unrecognized mammalian genes that do not encode proteins, but instead function as long RNA molecules, and seem to play critical roles in both health and disease, including cancer, immune signaling and stem cell biology.

A research team at the Broad Institute of Harvard and MIT and Beth Israel Deaconess Medical Center has uncovered a vast new class of previously unrecognized mammalian genes that do not encode proteins, but instead function as long RNA molecules.

Their findings, presented in the February 1st advance online issue of the journal Nature, demonstrate that this novel class of “large intervening non-coding RNAs” or “lincRNAs” plays critical roles in both health and disease, including cancer, immune signaling and stem cell biology.

“We’ve known that the human genome still has many tricks up its sleeve,” said Eric Lander, founding director of the Broad Institute and co-senior author of the Nature paper. “But, it is astounding to realize that there is a huge class of RNA-based genes that we have almost entirely missed until now.”

Standard “textbook” genes encode RNAs that are translated into proteins, and mammalian genomes harbor about 20,000 such protein-coding genes. Some genes, however, encode functional RNAs that are never translated into proteins. These include a handful of classical examples known for decades and some recently discovered classes of tiny RNAs, such as microRNAs.

By contrast, the newly discovered lincRNAs are thousands of bases long. Because only about ten examples of functional lincRNAs were known previously, they seemed more like genomic oddities than critical components. The new Nature study shows that there are actually thousands of such genes and that they have been conserved across mammalian evolution.

“The challenge in finding these lincRNAs is that they have been hiding in plain sight,” said John Rinn, a Harvard Medical School assistant professor at Beth Israel Deaconess Medical Center and an associate member of the Broad Institute of Harvard and MIT. “The human and mouse genomes are already known to produce many large RNA molecules, but the vast majority show no evolutionary conservation across species, suggesting that they may simply be ‘genomic noise’ without any biological function.”

To uncover this large collection of new genes, the Broad scientific team looked not at the RNA molecules themselves but at telltale signs in the DNA called chromatin modifications or epigenomic marks. They searched for genomic regions that have the same chromatin patterns as protein-coding genes, but do not encode proteins. By surveying the genomes of four different types of mouse cells (including embryonic stem cells and cells from various tissue types), they found an astounding 1,586 such loci that had not been previously described. The researchers also found that the vast majority of these genomic regions are transcribed into lincRNAs, and that these are conserved across mammals.

“The epigenomic marks revealed where these genes were hiding,” said Mitch Guttman, a MIT graduate student working at the Broad Institute. “Analysis of their sequence then revealed that the genes are highly conserved in mammalian genomes, which strongly suggested that these genes play critical biological functions.”

By correlating the expression patterns of lincRNAs in various cell types with the expression patterns of known critical protein-coding genes in those same cells, the scientists observed that lincRNAs likely play critical roles in helping to regulate a variety of different cellular processes, including cell proliferation, immune surveillance, maintenance of embryonic stem cell pluripotency, neuronal and muscle development, and gametogenesis. Further experimental evidence from several of the identified lincRNAs verified these observations.

Because of the stringent experimental conditions imposed by the researchers in identifying the 1,600 lincRNAs in the Nature study, it is likely that there are many more lincRNA genes hiding in plain sight in the genome, as well as other RNA-encoding genes that are as important to genome function as their better-recognized protein-coding counterparts.

Paper cited:

Guttman et al. 2009 “Chromatin signature reveals over a thousand highly conserved, large non-coding RNAs in mammals.” Nature DOI 10.1038/nature07672

About the Broad Institute of Harvard and MIT

The Broad Institute of Harvard and MIT was founded in 2003 to bring the power of genomics to biomedicine. It pursues this mission by empowering creative scientists to construct new and robust tools for genomic medicine, to make them accessible to the global scientific community, and to apply them to the understanding and treatment of disease.

The Institute is a research collaboration that involves faculty, professional staff and students from throughout the MIT and Harvard academic and medical communities. It is jointly governed by the two universities.

Organized around Scientific Programs and Scientific Platforms, the unique structure of the Broad Institute enables scientists to collaborate on transformative projects across many scientific and medical disciplines.

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, research and teaching affiliate of Harvard Medical School and ranks third in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Nicole Davis | Newswise Science News
Further information:
http://www.broad.mit.edu
http://www.bidmc.harvard.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>