Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Have Trouble Accessing Human Embryonic Stem Cell Lines, Says Survey

13.12.2011
The promise of stem cell research for drug discovery and cell-based therapies depends on the ability of scientists to acquire stem cell lines for their research.

A survey of more than 200 human embryonic stem cell researchers in the United States found that nearly four in ten researchers have faced excessive delay in acquiring a human embryonic stem cell line and that more than one-quarter were unable to acquire a line they wanted to study.

gThe survey results provide empirical data to support previously anecdotal concerns that delays in acquiring or an inability to acquire certain human embryonic stem cell lines may be hindering stem cell science in the United States,h said Aaron Levine, an assistant professor in the School of Public Policy in the Ivan Allen College of Liberal Arts at the Georgia Institute of Technology.

Results of the survey were published in the December issue of the journal Nature Biotechnology. Funding for the study was provided by the Kauffman Foundationfs Roadmap for an Entrepreneurial Economy Program.

Levine administered the web-based survey in November 2010 to more than 1,400 stem cell scientists working at U.S. academic and non]profit medical research institutions. Almost 400 respondents from 32 states completed the survey. Of those, 205 respondents reported using human embryonic stem cells in their research, and their responses were used in this study.

The surveyed scientists cited four main reasons for their problems accessing human embryonic stem cell lines: difficulty obtaining material transfer agreements, failure to acquire research approval from internal institutional oversight committees, cell line owners that were unwilling to share and federal policy considerations.

gBureaucratic challenges may be inevitable in this ethically contentious and politically sensitive field, but policymakers should attempt to mitigate these issues by doing things like encouraging institutions to accept third-party ownership verification and providing clearer guidance on human embryonic stem cell research not eligible for federal funding,h said Levine, who is also a member of the Georgia Tech Institute for Bioengineering and Bioscience.

The broad patents assigned to the initial inventors of the method used to isolate embryonic stem cells and numerous narrower patents claiming specific human embryonic stem cell-related techniques are also factors complicating access to human embryonic stem cell lines, according to Levine.

When survey respondents were asked how many of the more than 1,000 existing human embryonic stem cell lines they used, 76 percent reported using three or fewer lines and 54 percent reported using two or fewer lines in their research. More than half of the 130 respondents cited access issues as a major reason they chose to use specific cell lines in their research.

gThese results illustrate that many human embryonic stem cell scientists in the United States are not conducting comparative studies with a diverse set of human embryonic stem cell lines, which raises concern that at least some results are cell-line specific rather than broadly applicable,h said Levine. gFederal and state funding agencies may want to consider encouraging research using multiple diverse human embryonic stem cell lines to improve the reliability of research results.h

Embryonic stem cell lines are being used to develop new cellular therapies for various diseases, to screen for new drugs and to better understand inherited diseases. Itfs crucial that diverse lines are available for this research to ensure that all individuals benefit from the results.

While availability was cited as the most common factor affecting scientistsf choices regarding which cell lines to use, other considerations included suitability for a specific project, familiarity with specific lines, a desire to reduce complications in the laboratory, cost, the extent of relevant literature and the preferences of scientistsf colleagues.

Three of the initial human embryonic stem cell lines derived at the University of Wisconsin in the late 1990s were the lines most commonly used by respondents. Cell lines H1, H9 and H7 were used by 79, 68 and 26 percent of respondents, respectively. Scientists also reported using more than 100 other lines, but each of these was used by fewer than 12 percent of respondents.

gOther research communities in the life sciences have experienced material access problems and they addressed them, in part, by creating centralized information and data sharing hubs, including public DNA sequence databases, tissue banks and mouse repositories. The stem cell research community has taken promising steps in this direction, but this analysis should encourage the community to continue and, if possible, accelerate these efforts,h added Levine.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: Abby Robinson (abby@innovate.gatech.edu; 404-385-3364) or John Toon (jtoon@gatech.edu; 404-894-6986)

Writer: Abby Robinson

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>