Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists study predator-prey behavior between sharks and turtles

28.07.2015

Study is 1 of the first to investigate the 'landscape of fear' model on highly migratory ocean species

A new collaborative study led by scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science & Abess Center for Ecosystem Science & Policy examined predator-prey interactions between tiger sharks and sea turtles off the northwestern Atlantic Ocean.


The tiger shark (Galeocerdo cuvier) is a wide-ranging apex predator distributed across temperate and tropical seas. Tiger sharks possess behavioral and anatomical specializations for hunting sea turtles. The top surface of the shark is darkly pigmented which also allows them to maintain camouflage when hunting turtles resting at the water surface. This study used long-term satellite tagging data from large tiger sharks and adult female loggerhead sea turtles (Caretta caretta) to examine their movements relative to one another and evaluate if turtles modify their behaviors to reduce their chances of shark attack. The results show that turtles do not alter surfacing behavior to risk avoidance but that sharks may modify their behavior in an effort to increase their chance to prey on surfacing turtles.

Credit: Neil Hammerschlag

The research team used long-term satellite tagging data from large tiger sharks and adult female loggerhead sea turtles, common prey of tiger sharks, to examine their movement patterns and evaluate if turtles modify their behaviors to reduce their chances of a shark attack when turtle and shark home ranges overlapped.

The study revealed that tiger sharks undergo seasonal movements to take advantage of turtles nesting off the Carolinas during the summer. Tiger sharks are ambush predators, primarily attack surfacing turtles from below. In theory, loggerhead turtles should reduce their exposure at the surface in regions of high habitat overlap with tiger sharks. However, surprisingly, the researchers found that when shark-turtle overlap in the study region was high, turtles did not alter surfacing behavior to risk avoidance. Whereas, sharks did exhibit modified surfacing behavior believed to enhance predation opportunity.

"We suggest that sharks may not be an important factor influencing the movements of turtles in the study region," said Research Assistant Professor Neil Hammerschlag at the UM Rosenstiel School & Abess Center. "In addition to the unpredictability of a shark attack over such a large area, it is possible that fishing of tiger sharks has reduced their populations to levels that no longer pose a significant threat to turtles, with other factors becoming more important such as the need to avoid boat strikes"

The study is one of the first to test if the "landscape of fear" model, a scientific theory that has been used to explain how animals move and interact with the environment based on their fear of being attacked by their predators, is applicable to large open marine systems involving wide-ranging species, like sharks and turtles.

"This is one of the first studies to compare the large scale, long-term movements of sea turtles with their natural predators, tiger sharks," said study co-author Lucy Hawkes of the University of Exeter's Centre for Ecology and Conservation.

"These data are essential for setting and prioritizing marine protection for these species, which are both of conservation concern," said study co-author Matthew Witt of the University of Exeter's Environment and Sustainability Unit.

###

The study, titled "Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles across a large dynamic seascape," was published in the July 23 online edition of the journal Ecology. The paper's co-authors include: Hammerschlag, Kyra Hartog, Emily Rose Nelson of the University of Miami; Annette C. Broderick, Brendan J. Godley, Matthew J. Witt and Lucy A. Hawkes of the University of Exeter; John W. Coker, DuBose B. Griffin, Sally R. Murphy, Thomas M. Murphy of the South Carolina Department of Natural Resources; Michael S. Coyne of SeaTurtle.org; Mark Dodd of the Georgia Department of Natural Resources; Michael G. Frick of the University of Florida's Archie Carr Center for Sea Turtle Research; Kristina L. Williams of the Savannah Science Museum's Caretta Research Project; and Matthew H. Godfrey of the North Carolina Wildlife Resources Commission.

The paper can be found here: http://www.esajournals.org/doi/abs/10.1890/14-2113.1

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

Further reports about: Marine ecology predator-prey sea turtles sharks tiger sharks turtles

More articles from Life Sciences:

nachricht Cancer cachexia: Extracellular ligand helps to prevent muscle loss
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht The genetic secret of night vision
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>