Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists stress need for national marine biodiversity observation network

11.04.2013
With ocean life facing unprecedented threat from climate change, overfishing, pollution, invasive species and habitat destruction, a University of Florida researcher is helping coordinate national efforts to monitor marine biodiversity.

Humans depend on the ocean for food, medicine, transportation and recreation, yet little is known about how these vast ecosystems spanning 70 percent of the Earth's surface are functioning and changing. Following a workshop sponsored by U.S. federal agencies in 2010, researchers at eight institutions have proposed a blueprint for establishing a cooperative marine biodiversity observation network to monitor trends in marine ecosystem health and the distribution and abundance of oceanic life. The research will appear online in BioScience Thursday and in the journal's May print issue.

Biodiversity observation networks are indispensible tools, allowing scientists to follow and predict ecosystem changes to facilitate proactive responses to environmental pressures, said study co-author Gustav Paulay, invertebrate zoology curator at the Florida Museum of Natural History on the UF campus.

"Biodiversity is important not only because it's what the natural world is about, but also because tracking it tells you how healthy things are," Paulay said. "As an indicator of ecosystem health and resilience, biodiversity is key for sustaining oceans that face accelerating environmental change."

Experts determined a national marine biodiversity observation network could be established using existing technology within five years with appropriate funding and collaboration, but the effort requires strong leadership to integrate all the necessary elements, Paulay said. The study provides a series of recommendations, including coordination of existing efforts, digitization of historical data -- including vast museum collections – and establishment of regional centers to process and identify specimens.

"Tracking diversity is not just about tracking fish, or whales, or corals, but everything," Paulay said. "To date, there have been few attempts to track biodiversity broadly in the ocean."

From tiny phytoplankton and massive marine mammals to awe-inspiring sea dragons and ancient reefs, every element is important for healthy ecosystems, Paulay said.

Outside the U.S., efforts to create a marine biodiversity observation network have begun regionally in New Zealand and the European Union. The Smithsonian Institution also launched the first worldwide network of coastal field sites in 2012, a long-term project to monitor the ocean's coastal ecosystems.

Jim Carlton, a professor at Williams College in Massachusetts and director of the Maritime Studies Program of Williams College and Mystic Seaport, said the concept of a marine network is critical because elements are inter-related, from water quality and issues with fisheries to the regular arrival of new invasive species.

"It's rather amazing that in 2013, we don't have a well-established marine biodiversity network -- how could we not?" said Carlton, who is not involved with the study. "All coasts around the world are changing and we have a remarkably poor understanding about the extent of that change in many areas."

People are more dependent on oceans than they may realize, and without a coordinated network, researchers will not know how to manage these ecosystems, he said.

"The oceans are feeding hundreds of millions of people, they control the Earth's climate, 90 percent of all world goods travel on the ocean and most people in the world live within 100 miles of the sea," Carlton said. "For recreation, we rely on the fact that we can go to a beach and not get sick. We depend upon a huge amount of these resources in ways that we often don't know, but it really means maintaining the health of the ocean."

Divers have witnessed the effects of climate change most clearly on coral reefs, whose delicate ecology is highly sensitive to changes in maximum ocean temperatures, Paulay said.

"The scale of change was driven home to me in Palau in 1998, during a survey soon after the 1998 Pacific-wide warming event," Paulay said. "Palau is one of the gems of the world in terms of marine environments and reef diversity. When we returned to sites that once had acre upon acre of vibrant staghorn and bottlebrush corals covering the bottom, we found but a desert of dead skeletons -- mortality was virtually 100 percent."

Study co-authors include Emmett Duffy of the College of William and Mary, Linda Amaral-Zettler of the Marine Biological Laboratory in Woods Hole, Mass., Daphne Fautin of the University of Kansas, Tatiana Rynearson of the University of Rhode Island, Heidi Sosik of the Woods Hole Oceanographic Institution, and John Stachowicz of the University of California, Davis.

Writer: Danielle Torrent, dtorrent@flmnh.ufl.edu
Source: Gustav Paulay, 352-273-1948, paulay@flmnh.ufl.edu

Gustav Paulay | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Regulation of root growth from afar: How genes from leaf cells affect root growth.
22.07.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>