Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed new light on link between 'killer cells' and diabetes

16.01.2012
Killer T-cells in the human body which help protect us from disease can inadvertently destroy cells that produce insulin, new research has uncovered.

The study provides the first evidence of this mechanism in action and could offer new understanding of the cause of Type 1 diabetes.

Professor Andy Sewell, an expert in human T-cells from Cardiff University's School of Medicine worked alongside diabetes experts from King's College London to better understand the role of T-cells in the development of Type 1 diabetes.

The team isolated a T-cell from a patient with Type 1 diabetes to view a unique molecular interaction which results in the killing of insulin-producing cells in the pancreas.

"Type 1 diabetes is a result of the body's own immune system attacking and destroying the cells in the pancreas that manufacture the hormone insulin. Insulin controls blood sugar levels and a lack of insulin is fatal if untreated," said Professor Sewell.

"The mechanism by which the body attacks its own insulin producing cells in the pancreas is not fully understood. Our findings show how killer T-cells might play an important role in autoimmune diseases like diabetes and we've secured the first ever glimpse of the mechanism by which killer T-cells can attack our own body cells to cause disease," he added.

Co-author of the study, Professor Mark Peakman from the National Institute for Health Research (NIHR) Biomedical Research Centre at King's College London and Guy's and St Thomas' NHS Foundation Trust said: "This first sight of how killer T-cells make contact with the cells that make insulin is very enlightening, and increases our understanding of how Type 1 diabetes may arise.

"This knowledge will be used in the future to help us predict who might get the disease and also to develop new approaches to prevent it. Our aim is to catch the disease early before too many insulin-producing cells have been damaged."

The team now hope that by gaining a better understanding of this process it will put them in a much stronger position to devise new ways to prevent or even halt the disease.

The study, funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC), the Juvenile Diabetes Research Foundation (JDRF) using facilities at Diamond Light Source and published in Nature Immunology, shows that the killer T-cell receptor utilises an abnormal mode of binding in order to recognise cells producing insulin.

"The results of Dr Sewell's work provide key novel insights into T1D pathogenesis" said Teodora Staeva, Director of JDRF's Immune Therapies Program. "JDRF is pleased to support this kind of research that will accelerate the development of biomarkers and preventive therapies for Type 1 diabetes."

This unusual binding is thought to allow the T-cell to survive the culling process designed to rid the body of autoreactive T-cells.

The structure of the killer T-cell receptor bound to the insulin peptide shows that the interaction is highly focused on just a small part of the molecule.

In a further study published in the Journal of Biological Chemistry the same Cardiff and King's team has shown that this focused binding mode allows this T-cell receptor to respond to over 1.3 million other peptides of different molecular shape.

This ability to bind peptides with a multitude of different shapes may provide a clue as to how autoimmune diseases are initiated. It is possible that this T-cell was raised to fight an infection via one of the other 1.3 million peptides it can recognise but then inadvertently also recognised insulin once it had been put on 'red alert' by this infection.

Diabetes describes diseases where a person has high blood sugar. Treatment of diabetes and its complications represents a major health burden and accounts for over 10% of the National Health Service's annual budget.

Andy Sewell | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Life Sciences:

nachricht Dead cells disrupt how immune cells respond to wounds and patrol for infection
21.05.2019 | University of Sheffield

nachricht New study shows: Tropical corals reflect ocean acidification
21.05.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>