Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal underpinnings of drought tolerance in plants

12.06.2015

Genome-wide analysis elucidates drought-tolerance system in Arabidopsis

Regions all over the globe are suffering from severe drought, which threatens crop production worldwide. This is especially worrisome given the need to increase, not just maintain, crop yields to feed the increasing global population.


Arabidopsis seedlings after recovery from drought stress. Wild type on left, nac016 mutants on right.

Courtesy of Nam-Chon Paek

Over the course of evolution, plants have developed mechanisms to adapt to periods of inadequate water, and as any gardener can tell you, some species are better able to handle drought than others.

Accordingly, scientists have invested much effort to understand how plants respond to drought stress and what can be done to increase the drought tolerance of economically important plants. As Dr. Nam-Chon Paek of Seoul National University in Korea stated, 'We all expect that drought will be the major challenge for crop production in the near future.

Understanding drought-responsive signaling and the molecular and biochemical mechanisms of drought tolerance in model plants such as Arabidopsis and rice provide new insight into how to develop drought-tolerant crop plants through conventional breeding or biotechnological approaches.'

Arabidopsis thaliana was the first plant to have its genome sequenced. Paek is the senior author of a paper to be published this week in The Plant Cell that takes advantage of the genetic resources in this model species to reveal important underpinnings of drought responses in plants.

Paek's research group analyzed plants mutated in a regulatory gene called NAC016 and found that the nac016 mutant plants were more resistant to drought. The researchers set out to understand how this drought tolerance came about by comparing the set of expressed genes (the transcriptome) in the mutants to that in normal (so-called wild-type) plants.

According to Paek, 'Genome-wide transcriptome analysis using drought-tolerant or -susceptible variants is a promising method to reach the goal of understanding drought tolerance'. In this case, the scientists discovered that NAC016 is part of a mechanism to turn off responses to drought.

This is important because in the wild, plants likely evolved to keep the drought-response pathways inactive until needed so that they could save the energy the responses would require. For agricultural purposes, though, the ability to control when the pathway is on would be a great boon to developing drought-tolerant crops.

###

Contact author:

Dr. Nancy R. Hofmann
nhofmann@aspb.org
575-571-8926
The Plant Cell
http://orcid.org/0000-0001-9504-1152

Media Contact

Tyrone Spady
tspady@aspb.org
301-251-0560 x121

 @ASPB

http://www.aspb.org 

Tyrone Spady | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

FISBA AG opens sales office in Shanghai, China

03.06.2020 | Press release

Perfect optics through light scattering

02.06.2020 | Power and Electrical Engineering

The digital construction site: A smarter way of building with mobile robots

02.06.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>