Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists remove amyloid plaques from brains of live animals with Alzheimer's disease

19.10.2009
New research in the FASEB Journal suggests that manipulation of the brain's own immune cells with IL-6 could lead to reversal of Alzheimer's disease pathology

A breakthrough discovery by scientists from the Mayo Clinic in Jacksonville, FL, may lead to a new treatment for Alzheimer's Disease that actually removes amyloid plaques—considered a hallmark of the disease—from patients' brains.

This discovery, published online in The FASEB Journal, is based on the unexpected finding that when the brain's immune cells (microglia) are activated by the interleukin-6 protein (IL-6), they actually remove plaques instead of causing them or making them worse. The research was performed in a model of Alzheimer's disease established in mice.

"Our study highlights the notion that manipulating the brain's immune response could be translated into clinically tolerated regimens for the treatment of neurodegenerative diseases," said Pritam Das, co-author of the study, from the Mayo Clinic in Jacksonville, FL.

Das and colleagues made this unexpected discovery when they initially set out to prove that the activation of microgila trigger inflammation, making the disease worse. Their hypothesis was that microglia would attempt to remove the plaques, but would be unable to do so, and in the process cause excessive inflammation. To the surprise of the researchers, when microglia were activated by IL-6, they cleared the plaques from the brains.

To do this, the researchers over-expressed IL-6 in the brains of newborn mice that had yet to develop any amyloid plaques, as well in mice with pre-existing plaques. Using somatic brain transgenesis technology, scientists analyzed the effect of IL-6 on brain neuro-inflammation and plaque deposition. In both groups of mice, the presence of IL-6 lead to the clearance of amyloid plaques from the brain. Researchers then set out to determine exactly how IL-6 worked to clear the plaques and discovered that the inflammation induced by IL-6 directed the microglia to express proteins that removed the plaques. This research suggests that manipulating the brain's own immune cells through inflammatory mediators could lead to new therapeutic approaches for the treatment of neurodegenerative diseases, particularly Alzheimer's disease.

"This model is as close to human pathology as animal models get. These results give us an exciting lead to newer, more effective treatments of Alzheimer's disease," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This study demonstrates that investment in experimental biology is the best way to approach the challenge posed by an aging population to the cost of health care."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fasebjournalreaders.htm. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information. FASEB comprises 22 nonprofit societies with more than 80,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB advances health and welfare by promoting progress and education in biological and biomedical sciences through service to its member societies and collaborative advocacy.

Details: Paramita Chakrabarty, Karen Jansen-West, Amanda Beccard, Carolina Ceballos-Diaz, Yona Levites, Christophe Verbeeck, Abba C. Zubair, Dennis Dickson, Todd E. Golde, and Pritam Das. Massive gliosis induced by interleukin-6 suppresses A deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. doi:10.1096/fj.09-141754 ; http://www.fasebj.org/cgi/content/abstract/fj.09-141754v2

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>