Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists now know what DNA's chaperone looks like

28.11.2019

It's long been known that the proteins that package DNA, like students at a high school dance, require a chaperone. But what exactly that guardian looks and acts like has been a mystery--until now.

A team of researchers at the University of Colorado Boulder has cracked the puzzle of the Facilitates Chromatin Transcription (FACT) protein structure. This protein is partly responsible for making sure everything goes smoothly and no improper interactions take place when DNA temporarily sheds and replaces its guardian proteins, or histones.


A visualization of the FACT protein.

Credit: Liu et al. 2019

These findings, which are the result of a project five years in the making at CU Boulder and out today in the journal Nature, will have ripple effects for not only our understanding of the genome and gene transcription, but for our understanding of cancer and the development of anti-cancer drugs.

"This is just the start for this protein. It's not the end," said Yang Liu, a research associate in the Department of Biochemistry at CU Boulder and one of the study's lead authors.

Ever since its discovery in 1998, the FACT protein has been of great interest for those who study DNA, largely because of the possibilities it presents. But, despite decades of effort, many of the central questions of how the protein works remain unanswered.

The FACT protein is an essential type of histone chaperone. These guardian proteins escort other proteins during the deconstruction and reconstruction of nucleosomes, or the structural unit responsible for organizing and packaging DNA. This happens during gene transcription (the step where DNA is copied into RNA), DNA replication (where the entire genome is replicated faithfully) and DNA damage repair (which is essential to prevent disease such as cancer).

However, with no clear structure for the protein available, scientists have been less than clear as to how exactly it does both: How does one protein both destroy and maintain?

This new research sheds light on both.

"For a long time, people have been trying to find the mechanism behind how [this protein] helps transcription," said Keda Zhou, a research associate in biochemistry at CU Boulder and the other lead author for the paper. "People have been working on different aspects of this protein, so we're really happy that we're the first to see it in action. It's really exciting."

The research team, aided by two other labs also led by women also managed to finally solve the puzzle by isolating the FACT protein and, through a combination of hard-work, ingenuity and tenacity, map it out and catch it in the act of both destroying and maintaining the nucleosome.

What they found is that FACT resembles the saddle and fork of a unicycle, made up of multiple domains that straddle the nucleosome 'wheel' of the unicycle. Up until that point, researchers were seeing only one domain at a time, causing confusion and contradictory results.

And yet, it appears that none of those differing findings are wrong.

Liu and Zhou's work "really put everything together. And it seems like everybody's right, which is just really cool," said Karolin Luger, the endowed chair of biochemistry at CU Boulder, a Howard Hughes Medical Institute Investigator and the study's senior author.

This discovery is only the beginning for this protein, both for Luger's lab and the broader medical community.

"There are lots of unknowns," said Zhou. "But this is a starting point."

###

Other coauthors on the new study include researchers at the University of Texas at Dallas, National Resource for Automated Molecular Microscopy and Columbia University.

Daniel Strain | EurekAlert!

More articles from Life Sciences:

nachricht When plants bloom
29.11.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Harnessing the power of CRISPR in space and time
29.11.2019 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

When plants bloom

29.11.2019 | Life Sciences

Harnessing the power of CRISPR in space and time

29.11.2019 | Life Sciences

New evolutionary insights into the early development of songbirds

29.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>