Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists moving closer to 'artificial noses'

27.04.2009
More than one nanostring to their bow

These days, chemical analysts are expected to track down even single molecules. To do this highly sensitive detective work, nano researchers have developed minute strings that resonate in characteristic fashion. If a molecule docks onto one of the strings, then it becomes heavier, and its oscillations become measurably slower.

Until recently, however, such "nano-electromechanical systems", or NEMS, have been short of practical applications. Physicists at LMU Munich have now made a breakthrough in this field: They have constructed a system of nanostrings made of non-conducting material, where each string can be electrically excited separately. Thousands of these strings can be produced on a small chip. One of the devices that could be created with this system is a highly sensitive "artificial nose" that detects various molecules – pollutants for example – individually. These new NEMS could also be used in a multitude of other applications – acting as tiny pulse generators in mobile phone clocks, for example.

Quick, certain and cheap detection of single molecules is a task that chemical analysts are now expected to perform. Luckily, there is a method they can employ for this, which uses nanotechnology: Specifically, they use "nano-electromechanical systems", or NEMS. These systems involve strings with diameters of the order of 100 nanometers – a ten-thousandth of a millimeter or a 1/500 of a human hair – which can be excited to resonate in a characteristic fashion. If these strings are coated with the right kind of chemicals, then molecules will dock onto them. More specifically: only one kind of molecule can dock onto each string. When a molecule docks onto a string, the string becomes heavier and its oscillation slows down a tiny bit. "By measuring the period of oscillation, we could therefore detect chemical substances with molecular precision," explains Quirin Unterreithmeier, first author of the study. "Ideally, you would have several thousand strings sitting on a chip the size of a fingernail, each one for highly specifically recognizing a single molecule – so you could build an extremely sensitive 'artificial nose', for example."

Until recently, however, getting such systems to work has proven technically difficult; one problem being to produce and measure the oscillations. While the nanostrings can be made to oscillate by magnetomechanical, piezoelectric or electrothermal excitement, this only works if the nanostrings are made of metal, or are at least metal-coated, which in turn greatly dampens the oscillations, preventing sensitive measurement. That hardly allows the detection of a single molecule. It also makes it harder to distinguish the different signals from differently oscillating strings.

The newly developed method now avoids these difficulties. Quirin Unterreithmeier, Dr. Eva Weig and Professor Jörg Kotthaus of the Center for NanoScience (CeNS), the Faculty of Physics of LMU Munich and the cluster of excellence "Nanosystems Initiative Munich (NIM)" have constructed an NEMS in which the nanostrings are excited individually by dielectric interaction – the same phenomenon that makes hair stand on end in winter. Following this physical principle, the nanostrings, which are made of electrically non-conducting silicon nitride, are excited to resonate when exposed to an oscillating inhomogeneous electric field, and their vibration then measured.

The alternating electric field required for this stimulation was produced between two gold electrodes right up close to the string. The oscillations were measured by two other electrodes. "We created this setup using etching techniques," reports Weig. "But this was easily done – even repeated ten thousand times on a chip. The only thing to do now is to make sure the strings can be individually addressed by a suitable circuit." All in all, this ought to be a technically easy exercise – but one that will allow a breakthrough in chemical analysis. Yet there are even more applications that can be seen beyond this "artificial nose". Among other things, the nanostrings could be employed as the pulse generators in mobile phone clocks, for example. These novel resonators could even be used as ultra-sharp electrical signal filters in metrological systems.

The study is a project of the cluster of excellence "Nanosystems Initiative Munich" (NIM), which has its sights set on developing, researching and bringing into operation functional nanosystems for application in information processing and life sciences. (NIM/suwe)

Publication:
"Universal transduction scheme for nanomechanical systems based on dielectric forces",
Quirin P. Unterreithmeier, Eva M. Weig, Jörg P. Kotthaus
Nature, 23 April 2009
doi:10.1038/nature07932
Contact:
Professor Jörg P. Kotthaus
Faculty of Physics, LMU Munich
Tel.: 089 / 2180 – 3737
E-Mail: kotthaus@cens.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Tel.: 089 / 2180 – 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | EurekAlert!
Further information:
http://www.lmu.de
http://www.nano-initiative-munich.de/press/press-material

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>