Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists map the portal to the cell's nucleus

16.03.2018

Like an island nation, the nucleus of a cell has a transportation problem. Evolution has enclosed it with a double membrane, the nuclear envelope, which protects DNA but also cuts it off from the rest of the cell. Nature's solution is a massive--by molecular standards--cylindrical configuration known as the nuclear pore complex, through which imports and exports travel, connecting the bulk of the cell with its headquarters.

In research described March 14 in Nature, scientists at Rockefeller University and their colleagues have delineated the architecture of the nuclear pore complex in yeast cells. The biological blueprint they uncovered shares principles sometimes seen on a much larger scale in concrete, steel, and wire.


A map showing how the 552 pieces of the pore complex fit together could inform research into numerous diseases.

Credit: The Rockefeller University

Usage Restrictions: Video may be used only to illustrate the research described in the accompanying release.

"It reminds us of a suspension bridge, in which a combination of sturdy and flexible parts produce a stress-resilient structure," says Michael P. Rout, who led the work together with Brian T. Chait.

The pore complex contains 552 component proteins, called nucleoporins, and scientists hadn't previously known how they all fit together. It took a combination of approaches to assemble a comprehensive map of these pieces. The researchers hope this new molecular structure will enable new studies of how the nuclear portal functions normally, and how defects in it lead to diseases such as cancer.

A milestone

The pore complex first emerged when single-celled organisms--the only living things at the time--acquired special compartments containing organ-like structures, including the nucleus, which houses the cell's genetic code.

It serves not only as a conduit to and from the nucleus, but also as a checkpoint regulating what passes in and out. Genetic instructions transcribed into RNA are allowed to exit, for example, while proteins needed inside the nucleus may enter. Other things, such as viruses bent on taking over the cell, are kept at bay.

Rout and Chait began mapping this ancient structure more than 20 years ago, knowing the project could well span decades since the target of their curiosity is not easily defined.

More than a third of the pore complex can move about, and this flexibility, along with the structure's immense size and the constant stream of traffic passing through it, meant that no single approach to mapping it would work. "In the end, we used everything we could lay our hands on, brought the results together, and integrated them into a single structure," says Chait, who is Rockefeller's Camille and Henry Dreyfus Professor.

Together with researchers at the University of California, San Francisco; Boston University Medical School; and Baylor College of Medicine, the team was able to determine the type and amount of each nucleoporin and their proximities to one another, as well as the weight and shape of the whole complex.

This data allowed them to visualize the anatomy of many of the individual pore components and to place them all within the pore complex. They uncovered a complicated ringed structure containing rigid, diagonal columns and flexible connectors that evoke the towers and cables of human-made structures like the Golden Gate Bridge.

The resulting map is a breakthrough in a line of investigation with a deep Rockefeller history. The pore complex first came into human view in the 1950s, when a university scientist, Michael Watson, observed small densities dotting the surface of the nuclear envelope. And about two decades later, the lab of Günter Blobel, who passed away last month, was among the first to discover individual nups and then determine their structure.

A new starting point

When it comes to the pore complex, yeast has a considerable amount in common with us. When the team compared their data with structural findings from human pore complexes, they found similar elements arranged somewhat differently. The resemblance suggests the yeast pore complex could be useful for research relevant to humans.

And there's a lot of such research to be done. Defects in the pore complex and its components have been linked to a host of diseases, including autoimmune disorders and cancer; meanwhile, viruses have evolved ways to sneak past it altogether. But the details of these malfunctions and blind spots are often obscure.

The new yeast structure may help. With it, the team found they could map sites that are altered in some cancers--evidence, they say, that the yeast pore complex can be used to test how factors like stress, drugs, or mutations change the human structure, and so aiding efforts to understand and treat disease.

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!

More articles from Life Sciences:

nachricht Molecular motors run in unison in a metal-organic framework
20.03.2019 | University of Groningen

nachricht Active substance from plant slows down aggressive eye cancer
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>