Scientists isolate new antifreeze molecule in Alaska beetle

“The most exciting part of this discovery is that this molecule is a whole new kind of antifreeze that may work in a different location of the cell and in a different way,” said zoophysiologist Brian Barnes, director of the University of Alaska Fairbanks Institute of Arctic Biology and one of five scientists who participated in the Alaska Upis ceramboides beetle project.

Just as ice crystals form over ice cream left too long in a freezer, ice crystals in an insect or other organism can draw so much water out of the organism’s cells that those cells die. Antifreeze molecules function to keep small ice crystals small or to prevent ice crystals from forming at all. They may help freeze-tolerant organisms survive by preventing freezing from penetrating into cells, a lethal condition. Other insects use these molecules to resist freezing by supercooling when they lower their body temperature below the freezing point without becoming solid.

UAF graduate student and project collaborator Todd Sformo found that the Alaska Upis beetle, which has no common name, first freezes at about minus 18.5 degrees Fahrenheit in the lab and survives temperatures down to about 104 degrees below zero Fahrenheit.

“It seems paradoxical that we find an antifreeze molecule in an organism that wants to freeze and that’s adapted to freezing,” said Barnes, whose research group is involved in locating insects, determining their strategies of overwintering and identifying the mechanisms that help them get through the winter

A possible advantage of this novel molecule comes from it having the same fatty acid that cells membranes do. This similarity, says Barnes, may allow the molecule to become part of a cell wall and protect the cell from internal ice crystal formation. Antifreeze molecules made of proteins may not fit into cell membranes.

“There are many difficult studies ahead,” said Barnes. “To find out how common this biologic antifreeze is and how it actually prevents freezing and where exactly it’s located.”

This project was led by Kent Walters at the University of Notre Dame with collaborators Anthony Serianni and John H. Duman of UND and Barnes and Sformo of UAF and was published in the Dec. 1 issue of the journal Proceedings of the National Academy of Sciences.

CONTACT: Brian M. Barnes, director, Institute of Arctic Biology, University of Alaska Fairbanks, bmbarnes@alaska.edu, 907-474-7649. Todd Sformo, wildlife biologist, North Slope Borough, Department of Wildlife Management, Alaska, tlsformo@alaska.edu, 907-852-0350 ext. 244. Marie Gilbert, information officer, Institute of Arctic Biology, University of Alaska Fairbanks, megilbert@alaska.edu, 907-474-7412.

REPORTERS: Brian Barnes is attending the American Geophysical Union fall meeting in San Francisco Dec. 14-18 and will be available by email during that time.

Media Contact

Marie Gilbert EurekAlert!

More Information:

http://www.alaska.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors