Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists in Cologne identify important lysine-acetylation regulatory mechanisms for Ran protein

12.08.2015

The team of scientists led by Dr. Michael Lammers at CECAD, the Cluster of Excellence at the University of Cologne, has discovered that the essential cellular protein Ran is fundamentally regulated by lysine acetylation. Ran belongs to the family of Ras proteins, which regulate fundamental cellular processes such as cell differentiation, cell division, and intracellular transport. Mutations in Ras-related proteins are involved in the development of various types of cancer including colorectal cancer, lung cancer, and lymphomas. Mechanisms that can switch off the functions of Ran protein are therefore of particular therapeutic interest.

Discoveries made by scientists in Cologne lead to new perspectives in the treatment of colorectal cancer, lung cancer, and lymphomas. Dr. Michael Lammers and his research team at CECAD have identified new regulatory mechanisms for Ran protein.

They have shown that all essential functions of the small GTP-binding Ran protein can be regulated by lysine acetylation. Ran is involved in many important cell processes including cell division and protein transport. Dysregulation of these processes has dramatic effects on normal cell development.

Many types of tumor cells have increased concentrations of Ran or Ran-interacting proteins or Ran-regulators. Switching off Ran-function in a targeted manner, using the newly identified regulatory system, may provide novel therapeutic approaches.

The small Ran protein is a molecular switch that can be turned on or off depending on the nucleotide charge. If this switch protein is not regulated properly, there may be far-reaching effects on essential cell functions.

Using high-resolution quantitative mass spectrometry, it has recently been shown that many of many of the amino acids – the lysines – in the Ran protein can be modified by adding an acetyl group. Modifications of this type made to the folded protein, once biosynthesis is complete, essentially alter and regulate protein function. Some of the acetylation sites are to be found in highly relevant functional regions within the Ran protein.

Dr. Lammers: “With a combined synthetic biological, biochemical, and cell biological approach, we have shown that lysine acetylation regulates nearly all essential Ran functions – something that was completely unknown beforehand. For some of the sites, we have also been successful in identifying specific enzymes responsible to modify the protein in this way, adding and removing such modifications. These findings may allow us to develop novel agents for cancer therapy.”

Cancer is the second most common cause of death in industrialized nations and responsible for about 25% of all deaths. The risk of malignancy increases with age – which means that research into the development and treatment of cancer is of great economic and personal interest in an aging society. CECAD, the Cluster of Excellence at the University of Cologne, is carrying out research into aging and its associated diseases. CECAD’s vision is to develop new treatments for the entire spectrum of age-related diseases. Given this aim, the latest findings from Dr. Lammers and his team are of great import.

Published in: Proc. Natl. Acad. Sci. U. S. A.; on June 29th 2015 (Epub)

de Boor, S.*, Knyphausen, P.*, Kuhlmann, N., Wroblowski, S., Brenig, J., Nolte, H., Krüger, M., and Lammers, M. (2015). Small GTP-binding protein Ran is regulated by posttranslational lysine-acetylation. Proc. Natl. Acad. Sci. U. S. A.] 12(28):E3679-88. doi: 10.1073/pnas.1505995112. Epub 2015 Jun 29.
*(contributed equally to the work)

Contact:
Dr. Michael Lammers
mlammers@uni-koeln.de
Tel. +49(0) 221-478-84308/84314

Astrid Bergmeister MBA
Head of PR & Marketing, CECAD
University of Cologne
Phone: +49 (0)221 478 84043
Email: astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>