Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify prostate cancer stem cells among low-PSA cells

07.05.2012
Cells resist hormone inhibition and chemotherapy; video captures production of other cell types

Prostate cancer cells that defy treatment and display heightened tumor-generating capacity can be identified by levels of prostate specific antigen (PSA) expressed in the tumor cells, a research team led by scientists at The University of Texas MD Anderson Cancer Center reports in the May 3 edition of Cell Stem Cell.

"Using a new technique, we were able for the first time to separate low-PSA and high-PSA prostate cancer cells. This led to the discovery of a low-PSA population of cancer stem cells that appears to be an important source of castration-resistant prostate cancer," said study senior author Dean Tang, Ph.D., professor in MD Anderson's Department of Molecular Carcinogenesis.

Hormone therapy is used to block production of testosterone, which fuels prostate cancer growth, via either chemical or physical castration. Tumors eventually resist this approach.

In cell lines and mouse model experiments, the low-PSA cells resisted chemotherapy and thrived under hormone deprivation, the two main prostate cancer drug treatments , the researchers found.

Low-PSA cells were found to be both self-renewing and capable of differentiating into other prostate cancer cell types upon division, a hallmark of stem cells called asymmetric cell division.

"Asymmetric cell division is the gold standard feature of normal stem cells," Tang said. "Using time-lapse fluorescent microscopy, we were able to show asymmetric cell division by filming a low-PSA cell dividing into one high-PSA cell and one low-PSA cell."

Their findings point to the need to develop new therapeutics to target low-PSA prostate cancer cells that can be combined with hormone therapy to wipe out cancer cells and prevent recurrence.

Low-PSA tumors associated with advanced prostate cancer

Previous research by others indicated that low-PSA tumor cells are rare in early stage disease but become more abundant in advanced prostate cancer. And patients whose tumors were composed of more than 50 percent PSA-positive cells enjoyed longer survival.

This made Tang and colleagues wonder whether the two cell types fundamentally differ from each other and so play different roles in prostate cancer progression.

They analyzed 20 untreated prostate cancer samples staged at varying degrees of aggressiveness on the Gleason scale and 23 samples where treatment had failed. High-PSA tumor cells composed on average about 80 percent of the Gleason 7 tumors, about 60 percent of the higher grade Gleason 9/10 tumors but only about 15 percent of the treatment-failed tumors.

A database analysis of gene expression in prostate cancer was consistent with the tumor experiments, indicating an association between low levels of PSA in tumors and disease recurrence, spread to lymph nodes, metastasis and shortened patient survival.

Turning high-PSA cells green

The next challenge was separating the two cell types to understand their biological, tumor-initiating and drug-response properties.

Tang and colleagues developed a lentiviral delivery system equipped with a PSA promoter that triggers green fluorescence protein when PSA is expressed in an infected cell.

This lentiviral reporter system allowed separation of low-PSA and high-PSA cells for the first time, Tang said. A series of experiments uncovered striking differences between them.

High-PSA prostate cancer cells:
Divide rapidly, which makes them vulnerable to chemotherapy that targets fast-proliferating cells;

Express high levels of the androgen receptor, a key to testosterone production, and so are vulnerable to hormonal therapy; and

Produce only identical copies of themselves when they divide.


Low-PSA prostate cancer cells:
Divide slowly and express anti-stress genes that help them resist chemotherapy;

Either lack or have a weak presence of the androgen receptor, allowing them to grow while hormonal therapy wipes out PSA-positive cells; and

Can divide into one copy of themselves and one PSA-positive cell during reproduction. The researchers captured this on video microscopy, filming the division of a grey low-PSA cell into one copy of itself and one copy of a vibrantly green PSA-positive cell.


Low-PSA tumors have long-term tumor-generating capacity

When the team implanted the two cell types in hormonally intact male mice, the rapidly reproducing PSA-positive cells caused faster growth and larger tumors in the first generation. However, after that the low-PSA cells generated larger, faster-growing tumors and tumor incidence in the high-PSA cells dropped. In fact, the low-PSA prostate cancer cells possess indefinite tumor-propagating capacity.

In contrast, when implanted in the castrated mice, the low-PSA prostate cancer cells developed much larger tumors than the corresponding high-PSA cells. In another experiment, mice with tumors generated by either cell type were then castrated and treated with hormonal therapy. Low-PSA tumors grew better in these doubly androgen-deprived mice than the high-PSA tumors.

"These findings closely resemble progression observed in patients after androgen-deprivation treatment and reflect reducedPSA-producing cells in patient tumors after androgen depletion," Tang said.

Effect of low-PSA cells in human tumors

Tang and colleagues analyzed tumor cell PSA expression in 556 human tumors and found low protein levels correlated with reduced overall survival.

They separated the two types of cells in three primary human tumors and found that low-PSA cells did not express androgen receptor and have higher cell-generating and sphere-forming capabilities than high-PSA cells.

Future research will focus on developing therapeutic targets for low-PSA cells and illuminating the epigenetic landscapes of both cell types.

Co-authors with Tang are co-first authors Jichao Qin, Ph.D., and Xin Liu, Ph.D., Brian Laffin, Ph.D., Xin Chen, M.D., Grace Choy, Ph.D., Collene Jeter, Ph.D., Tammy Calhoun-Davis, Hangwen Li, Ph.D., Kevin Lin, and Mahipal Suranen, Ph.D., all of MD Anderson's Department of Molecular Carcinogenesis at the Science Park in Smithville, Texas; Ganesh Palapattu, M.D., The Methodist Hospital, Houston; Shen Pang, Ph.D., UCLA Dental Research Institute and School of Dentistry; Jiaoti Huang, M.D.,Ph.D., UCLA David Geffen School of Medicine; Ivan Ivanov, Ph.D., Texas A&M University College of Veterinary Medicine; and Wei Li, Ph.D., Baylor College of Medicine, Houston.

This research was financed by grants from the National Cancer Institute, the U.S. Department of Defense, the Cancer Prevention and Research Institute of Texas, the Elsa Pardee Foundation, the MD Anderson Cancer Center University Cancer Fund, MD Anderson Center for Cancer Epigenetics, the Laura and John Arnold Foundation RNA Center and MD Anderson's Cancer Center Support Grants.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>