Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Potential Key to Lyme Disease

11.02.2009
Researchers at UT Southwestern Medical Center have identified a protein that may help give Lyme disease its bite.

The findings suggest that the bacterial protein, which aids in transporting the metal manganese, is essential for the bacterium that causes Lyme disease to become virulent.

“We believe our findings provide a foundation for further defining metal homeostasis in this human pathogen and may lead to new strategies for thwarting Lyme disease,” said Dr. Michael Norgard, chairman of microbiology at UT Southwestern and senior author of a study now online and in an upcoming issue of the Proceedings of the National Academy of Sciences.

Lyme disease, discovered in 1977, is the most prevalent tick-borne infection in the U.S. Borrelia burgdorfei, the bacterium that causes Lyme disease, lives in infected mammals and in the midgut of ticks. When an infected tick bites an animal or a human, the bacteria are transmitted to the new host. Infection causes fever, malaise, fatigue, headache, muscle and joint aches, and a characteristic “bull’s-eye” rash that surrounds the site of infection.

To establish infection, however, the bacterium also must acquire a number of essential nutrients, including metals like manganese from its mammalian and tick hosts. Until now, no metal transporter responsible for this acquisition had been identified in this bacterium.

In the current study, microbiologists examined whether bacteria genetically engineered to lack this manganese transporter, called BmtA, transmitted Lyme disease to ticks and mice. The bacterium lacking the transporter, Dr. Norgard said, grows a bit more slowly in the test tube but is not dramatically different from the normal version.

“When you try to grow it in a mouse, however, it can’t grow,” he said. “The fact that the bacterium without this particular manganese transporter can’t grow in a mouse raises important questions about what aspects of physiology and metabolism contribute to the pathogenicity of the organism.”

Lead author Dr. Zhiming Ouyang, postdoctoral researcher in microbiology at UT Southwestern, said another newly discovered characteristic about the bacterium that causes Lyme disease is that it doesn’t seem to require iron to function, something most other pathogens need to survive.

“Out of the thousands of bacteria known, the Lyme disease agent and only one or two other bacterial species do not require iron for growth,” Dr. Ouyang said. “That raises the question as to what other metal co-factors the Lyme disease bacterium depends on to carry out the work that iron does for all these other biological systems. Our research suggests that manganese is a really important one.”

The next step is to understand the exact mechanism of how manganese functions in the organism.

“I really think that there’s also something to the notion that manganese may regulate the expression of other virulence factors,” Dr. Norgard said. “It could be that manganese has more of an indirect effect, but more research is needed to determine what must happen for Borrelia burgdorfei to become virulent.”

Researchers from Indiana University School of Medicine collaborated on the study.

The research was funded by the National Institute of Allergy and Infectious Diseases.

Dr. Michael Norgard -- http://www.utsouthwestern.edu/findfac/professional/0,2356,15356,00.html

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>