Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify first gene in programmed axon degeneration

08.06.2012
Discovery provides evidence of new therapeutic target that could delay axon decay

Degeneration of the axon and synapse, the slender projection through which neurons transmit electrical impulses to neighboring cells, is a hallmark of some of the most crippling neurodegenerative and brain diseases such as amyotrophic lateral sclerosis (ALS), Huntington's disease and peripheral neuropathy.

Scientists have worked for decades to understand axonal degeneration and its relation to these diseases. Now, researchers at the University of Massachusetts Medical School are the first to describe a gene – dSarm/Sarm1 – responsible for actively promoting axon destruction after injury. The research, published today online by Science, provides evidence of an exciting new therapeutic target that could be used to delay or even stop axon decay.

"This discovery has the potential to have a profound impact on our understanding of neurodegenerative diseases, much like the discovery of apoptosis (programmed cell death) fundamentally changed our understanding of cancer," said Marc R. Freeman, PhD, associate professor of neurobiology at the University of Massachusetts Medical School and lead investigator on the study. "Identification of this gene allows us to start asking exciting new questions about the role of axon death in neurodegenerative diseases. For example, is it possible that these pathways are being inappropriately activated to cause premature axon death?"

For more than a century, scientists believed that injured axons severed from the neuron cell body passively wasted away due to a lack of nutrients. However, a mouse mutation identified in the early 1990s – called slow Wallerian degeneration (Wlds) – was able to suppress axon degeneration for weeks. This finding forced scientists to reassess Wallerian degeneration, the process through which an injured axon degenerates, as a passive process and consider the possibility that an active program of axon auto-destruction, akin to apoptotic death, was at work instead.

If Wallerian degeneration was an active process, hypothesized Dr. Freeman, a Howard Hughes Medical Institute Early Career Scientist, then it should be possible through forward genetic screens in Drosophila to identify mutants exhibiting Wlds-like axon protection. Freeman and colleagues screened more than 2,000 Drosophila mutants for ones that exhibited long-term survival of severed axons. Freeman says this was a heroic effort on the part of his colleagues. The screen took place over the next two and a half years, and involved seven students and post-docs in the Freeman lab—Jeannette M. Osterloh, A. Nicole Fox, PhD, Michelle A. Avery, PhD, Rachel Hackett, Mary A. Logan, PhD, Jennifer M. MacDonald, Jennifer S. Zeigenfuss—who performed the painstaking and labor-intensive experiments needed on each Drosophila mutant to identify flies that suppressed axonal degeneration after nerve injury.

Through these tests, they identified three mutants (out of the 2,000 screened) where severed axons survived for the lifespan of the fly. Next generation sequencing and chromosome deficiency mapping techniques were then used to isolate the single gene affected in all three – dSarm. These were loss-of-function alleles, meaning that Drosophila unable to produce the dSarm/Sarm1 molecule exhibited prolonged axon survival for as many as 30 days after injury. Freeman and colleagues went on to show that mice lacking Sarm1, the mammalian homolog of dSarm, also displayed remarkable preservation of injured axons. These findings provided the first direct evidence that Wallerian degeneration was driven by a conserved axonal death program and not a passive response to axon injury.

"For 20 years people have been looking for a gene whose normal function is to promote axon degeneration," said Osterloh, first author on the study. "Identification of the dSarm/Sarm1 gene has enormous therapeutic potential, for example as a knockdown target for patients suffering from diseases involving axonal loss."

The next step for Freeman and colleagues is to identify additional genes in the axon death pathway and investigate whether any have links with specific neurodegenerative diseases. "We're already working with scientists at UMMS to understand the role axon death plays in ALS and Huntington's disease," said Freeman. "We are very excited about the possibility that these findings could have broad therapeutic potential in many neurodegenerative diseases."

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $270 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>