Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists 'fix' bacterial tree of life

28.08.2018

Bacterial classification has been given a complete makeover by a team of University of Queensland researchers, using an evolutionary tree based on genome sequences.

The study, led by Professor Philip Hugenholtz from UQ's School of Chemistry and Molecular Biosciences and the Australian Centre for Ecogenomics (ACE), relied on a technique called metagenomics, where bacterial genomes are obtained straight from environmental samples, to create a more complete picture of the structure of the bacterial kingdom.


The 'tree of life' for the bacterial world, bacteria's taxonomy in a phylogenetic tree.

Credit: The University of Queensland

Usage Restrictions: Only to be used with this story.

Professor Hugenholtz said this structure, known scientifically as taxonomy, helps us connect the relationships between living things.

"Taxonomy helps us classify living things by arranging them in a hierarchy from closely to distantly related organisms according to ranks, such as species, genus, family, order, class, phylum and domain," he said.

"It's a system that helps us understand how organisms are related to each other, just like we do for time - using seconds, minutes, hours, and so on - or for geographic locations, using a street number, street, suburb, state and country."

Professor Hugenholtz said the scientific community generally agrees that evolutionary relationships are the most natural way to classify organisms, but bacterial taxonomy is riddled with errors, due to historical difficulties.

"This is mainly because microbial species have very few distinctive physical features, meaning that there are thousands of historically misclassified species," he said.

"It's also compounded by the fact that we can't yet grow the great majority of microorganisms in the laboratory, so have been unaware of them until quite recently."

Dr Donovan Parks, the lead software developer on the project, is excited about the recent advancement of genome sequencing technology, and how it's helping reconstruct the bacterial tree of life.

"It's developed to a remarkable degree, and we can now get the entire genetic blueprints of hundreds of thousands of bacteria, including bacteria that have not yet been grown in the lab," he said.

The research team then used these genomic blueprints to construct a giant evolutionary tree of bacteria based on 120 genes that are highly conserved across the bacterial domain.

"This tree helped us create a standardised model, where we fixed all of the misclassifications and made the evolutionary timelines between bacterial groups consistent," Dr Parks said.

"For example, the genus Clostridium has been a dumping ground for rod-shaped bacteria that produce spores inside their cells, so we reclassified this group into 121 separate genus groups across 29 different families.

"We've given bacterial classification a complete makeover, and we're delighted that the scientific community is just as excited about this as we are."

The study, which also involves ACE researchers Dr Maria Chuvochina, Dr David Waite, Dr Christian Rinke, Adam Skarshewski and Pierre-Alain Chaumeil, has been published in Nature Biotechnology (DOI: 10.1038/nbt.4229).

The research teams' taxonomy is on the Genome Taxonomy Database, at gtdb.ecogenomic.org, which has been funded by an Australian Research Council Laureate Fellowship.

Media Contact

Phil Hugenholtz
p.hugenholtz@uq.edu.au
61-336-53822

 @uq_news

http://www.uq.edu.au 

Phil Hugenholtz | EurekAlert!
Further information:
http://dx.doi.org/10.1038/nbt.4229

More articles from Life Sciences:

nachricht In depression the brain region for stress control is larger
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation
19.09.2018 | Science China Press

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>