Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find powerful potential weapon to overcome antibiotic resistance

15.08.2019

UNC School of Medicine researchers discover how molecules called rhamnolipids could make common aminoglycoside antibiotics effective against the toughest Staph infections

Staphylococcus aureus bacteria are a major cause of serious infections that often persist despite antibiotic treatment, but scientists at the UNC School of Medicine have now discovered a way to make these bacteria much more susceptible to some common antibiotics.


Pseudomonas aeruginosa-produced rhamnolipids target the plasma membrane of Staphylococcus aureus (labeled here in red) to increase permeability to aminoglycoside antibiotics.

Credit: Conlon Lab, UNC School of Medicine

The scientists, in a study published in Cell Chemical Biology, found that adding molecules called rhamnolipids can make aminoglycoside antibiotics, such as tobramycin, hundreds of times more potent against S. aureus - including the strains that are otherwise very hard to kill. The rhamnolipids effectively loosen up the outer membranes of S. aureus cells so that aminoglycoside molecules can get into them more easily.

"There's a great need for new ways to kill bacteria that tolerate or resist standard antibiotics, and to that end we found that altering membrane permeability to induce aminoglycoside uptake is an extremely effective strategy against S. aureus," said study senior author Brian Conlon, PhD, an assistant professor in the department of microbiology and immunology at the UNC School of Medicine.

The U.S. Centers for Disease Control has estimated that in 2017 there were more than 119,000 cases of serious bloodstream Staph infections in the United States, of which more than 20,000 were fatal.

Standard treatments for many strains of the S. aureus do not kill the bacteria, either because the bacteria have genetically acquired specific antibiotic resistance or because they grow in the body in a way that makes them inherently less vulnerable.

For example, S. aureus can adapt its metabolism to survive in low-oxygen zones in abscesses or in the mucus-filled lungs of people with cystic fibrosis. In these environments, the bacterial outer wall or membrane becomes relatively impermeable to aminoglycosides, such as tobramycin.

Conlon and colleagues, including first author Lauren Radlinski, a PhD candidate in the Conlon laboratory, found in a 2017 study that rhamnolipids greatly enhance tobramycin's potency against standard test strains of S. aureus. Rhamnolipids are small molecules produced by another bacterial species, Pseudomonas aeruginosa, and are thought to be one of P. aeruginosa's natural weapons against other bacteria in the wild.

At high doses they make holes in rival bacteria's cell membranes. The UNC researchers found that rhamnolipids greatly boost the uptake of tobramycin molecules, even at low doses where they have no independent anti-bacterial effect.

In the new study, Conlon, Radlinski and colleagues tested rhamnolipid-tobramycin combinations against S. aureus populations that are particularly hard to kill in ordinary clinical practice. The researchers found that rhamnolipids boost tobramycin's potency against:

  • S. aureus growing in low-oxygen niches;
  • MRSA (methicillin-resistant S. aureus), which are a family of dangerous S. aureus variants with genetically acquired treatment resistance;
  • tobramycin-resistant S. aureus strains isolated from cystic fibrosis patients;
  • and "persister" forms of S. aureus that normally have reduced susceptibility to antibiotics because they grow so slowly.

Radlinski said, "Tobramycin doses that normally would have little or no effect on these S. aureus populations quickly killed them when combined with rhamnolipids."

Conlon, Radlinski, and colleagues determined that rhamnolipids even at low doses alter the S. aureus membrane in a way that makes it much more permeable to aminoglycosides. Each antibiotic in this family that they tested - including tobramycin, gentamicin, amikacin, neomycin, and kanamycin - had its potency enhanced. The experiments showed, moreover, that this potency-boosting strategy is effective not just against S. aureus but several other bacterial species, including Clostridioides difficile (C-diff), which is a major cause of serious, often-fatal diarrheal illness among the elderly and patients in hospitals.

Rhamnolipids come in many variants, and the scientists now hope to determine if there is an optimal variant that works powerfully against other bacteria while having little or no toxic effect on human cells. The team also plans to study other microbe-vs.-microbe weapons to find new ways to enhance the potency of existing antibiotics.

"There's a huge number of bacterial interspecies interactions that could be influencing how well our antibiotics work," Radlinski said. "We aim to find them with the ultimate goal of improving the efficacy of current therapeutics and slowing the rise of antibiotic resistance."

###

Other authors were Sarah Rowe-Conlon, PhD, Alec D. Wilkinson, and Rennica Huang of UNC-Chapel Hill; and Robert Brzozowski and Prahathees Eswara, PhD, of the University of South Florida.

The research was funded by the U.S. National Institutes of Health (F31AI140520 and R01AI137273).

Mark Derewicz | EurekAlert!
Further information:
http://news.unchealthcare.org/news/2019/august/scientists-find-powerful-potential-weapon-to-overcome-antibiotic-resistance
http://dx.doi.org/10.1016/j.chembiol.2019.07.009

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

Jena Laser Technology Conference brings together top international researchers

12.08.2019 | Event News

 
Latest News

Climate change 'disrupts' local plant diversity, study reveals

16.08.2019 | Life Sciences

Finnish discovery brings new insight on the functioning of the eye and retinal diseases

16.08.2019 | Life Sciences

A Rescue Plan for the Ocean

16.08.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>