Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find microbes in lava tube living in conditions like those on Mars

16.12.2011
The journal article this release is based on is available at: http://hdl.handle.net/1957/25386

A team of scientists from Oregon has collected microbes from ice within a lava tube in the Cascade Mountains and found that they thrive in cold, Mars-like conditions.

The microbes tolerate temperatures near freezing and low levels of oxygen, and they can grow in the absence of organic food. Under these conditions their metabolism is driven by the oxidation of iron from olivine, a common volcanic mineral found in the rocks of the lava tube. These factors make the microbes capable of living in the subsurface of Mars and other planetary bodies, the scientists say.

The findings, supported by a grant from the National Aeronautics and Space Administration (NASA), are detailed in the journal Astrobiology.

“This microbe is from one of the most common genera of bacteria on Earth,” said Amy Smith, a doctoral student at Oregon State University and one of the authors of the study. “You can find its cousins in caves, on your skin, at the bottom of the ocean and just about anywhere. What is different, in this case, is its unique qualities that allow it to grow in Mars-like conditions.”

In a laboratory setting at room temperature and with normal oxygen levels, the scientists demonstrated that the microbes can consume organic material (sugar). But when the researchers removed the organic material, reduced the temperature to near-freezing, and lowered the oxygen levels, the microbes began to use the iron within olivine – a common silicate material found in volcanic rocks on Earth and on Mars – as its energy source.

“This reaction involving a common mineral from volcanic rocks just hasn’t been documented before,” said Martin Fisk, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and an author on the study. “In volcanic rocks directly exposed to air and at warmer temperatures, the oxygen in the atmosphere oxidizes the iron before the microbes can use it. But in the lava tube, where the bacteria are covered in ice and thus sheltered from the atmosphere, they out-compete the oxygen for the iron.

“By mimicking those conditions, we got the microbes to repeat that behavior in the laboratory,” Fisk added.

The microbes were collected from a lava tube near Newberry Crater in Oregon’s Cascades Mountains, at an elevation of about 5,000 feet. They were within the ice on rocks some 100 feet inside the lava tube, in a low-oxygen, near-freezing environment. Scientists, including Fisk, have said that the subsurface of Mars could have similar conditions and harbor bacteria.

In fact, Fisk has examined a meteorite originating from Mars that contained tracks – which could indicate consumption by microbes – though no living material was discovered. Similar tracks were found on the rocks from the Newberry Crater lava tube, he said.

“Conditions in the lava tube are not as harsh as on Mars,” Fisk said. “On Mars, temperatures rarely get to the freezing point, oxygen levels are lower and at the surface, liquid water is not present. But water is hypothesized to be present in the warmer subsurface of Mars. Although this study does not exactly duplicate what you would find on Mars, it does show that bacteria can live in similar conditions.

“We know from direct examination, as well as satellite imagery, that olivine is in Martian rocks,” Fisk added. “And now we know that olivine can sustain microbial life.”

The idea for exploring the lava tube came from Radu Popa, an assistant professor at Portland State University and lead author on the paper. Popa used to explore caves in his native Romania and was familiar with the environmental conditions. Because lava tubes are a sheltered environment and exist on both Earth and Mars, Popa proposed the idea of studying microbes from them to see if life may exist – or could have existed – on the Red Planet.

“When temperatures and atmospheric pressure on Mars are higher, as they have been in the past, ecosystems based on this type of bacteria could flourish,” Popa said. “The fingerprints left by such bacteria on mineral surfaces can be used by scientists as tools to analyze whether life ever existed on Mars.”

About the OSU College of Oceanic and Atmospheric Sciences: COAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

Marty Fisk | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>