Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find out why living things are the size they are -- and none other

09.04.2010
New research in the FASEB Journal suggests that 'growth genes' are not driven by age, but by the process of growth itself, opening doors for organ regeneration as well as new treatments for abnormal body growth and cancer

If you consider yourself to be too short or too tall, things are looking up, or down, depending on your vertical disposition. New research published online in The FASEB Journal (http://www.fasebj.org) explains how we grow, how our bodies maintain correct proportions, and offers insight into what goes wrong with growth disorders and unregulated cell growth in cancer.

"We hope that these insights into the mechanisms controlling body growth will help us understand better the reasons for the excessive growth of cancer cells and also provide new approaches to turn growth back on in normal cells in order to regenerate damaged organs," said Julian C. Lui, Ph.D., a researcher involved in the work from the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health in Bethesda, Maryland.

Scientists studied which genes were active in young animals (growing rapidly) and compared them to the same genes in older animals (growing slowly). Then they identified which genes were "turned off" simultaneously in multiple organs with age. To understand the consequences of these genes being turned off, the researchers experimentally turned them off in cultured cells and observed the effects. They found that rapid growth in early life is a response to the activation of multiple genes that stimulate growth. These same genes are progressively turned off during the maturation process, causing growth to slow. This process occurs simultaneously in multiple organs, which explains why organs all stay in proportional size as the body grows. This process is not controlled by age. Instead, genes are turned off when organs achieve a certain level of growth.

"This important work answers the question of why any animal– including us – has a certain size," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "As this study shows, growth is dictated by organ development, and no one wishes their organs to be abnormally large or small."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 90,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Julian C. Lui, Patricia Forcinito, Maria Chang, Weiping Chen, Kevin M. Barnes, and Jeffrey Baron. Coordinated postnatal down-regulation of multiple growth-promoting genes: evidence for a genetic program limiting organ growth. FASEB J. doi:10.1096/fj.09-152835 ; http://www.fasebj.org/cgi/content/abstract/fj.09-152835v1

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>