Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new genetic path to deadly diarrheal disease

12.06.2012
Scientists have found new genetic information that shows how harmful bacteria cause the acute diarrheal disease shigellosis, which kills more than a million people worldwide each year.

The research, which could lead to the development of future treatments, was published today in the journal PLoS ONE. The study was led by Ohio University scientist Erin Murphy and doctoral student William Broach, with contributions from University of Nevada, Las Vegas and University of Texas at Austin researchers.


Bright spots among intestinal cells show where the shigella bacteria were able to replicate, indicating their ability to cause disease. Credit: Erin Murphy/Ohio University

When the disease-causing bacterium Shigella invades a human host, environmental conditions there, such as changes in temperature or pH, stimulate a genetic expression pathway within the bacterium that allows it to survive and cause disease. Central to this genetic pathway are two proteins, VirF and VirB. VirF functions to increase production of VirB which, in turn, promotes the production of factors that increases the bacterium's virulence, or ability to cause illness in its host.

"It's like a domino effect," said Murphy, assistant professor of bacteriology in the Ohio University Heritage College of Osteopathic Medicine.

Murphy and Broach's new study, however, suggests that production of VirB can be controlled independently of VirF. It also shows that the VirF-independent regulation is mediated by a specific small RNA, a special type of molecule whose job is to control the production of particular targets. This is the first study to demonstrate that transcription of virB is regulated by any factor other than VirF, Murphy explained.

The research not only reveals the intricate level of gene expression the bacteria employ to survive in the human body, but potentially could lead to new treatments. Currently, antibiotics are prescribed to patients with the disease.

"These findings are feeding into the basic understanding of this gene expression so that future researchers can work to disrupt it," Broach said. "The more we know about it, the more targets we have to disrupt it and to possibly develop targeted antibiotic treatments."

For those living in developing countries, where access to clean drinking water can be scarce, an improved medical treatment for shigellosis could mean the difference between life and death.

"In the United States, if we get severe diarrhea we can go to the store and get Gatorade," Murphy said. "But if you're already starving to begin with because you don't have access to good food and clean water, then you get shigellosis on top of that—and you don't have good water to rehydrate yourself—that's when the deaths happen."

The disease, which is transmitted person to person or through contaminated food or water sources, has an infectious dose of just 10 organisms, meaning as few as 10 organisms can cause disease in a healthy person. This infectious dose is exceedingly low compared to other bacteria that require tens of thousands of organisms to cause disease.

While it is often thought to be a third-world problem, shigellosis causes a reported 14,000 cases in the United States each year. The Centers for Disease Control suggests that the actual number may be 20 times higher, as mild cases often aren't reported or diagnosed.

"In the United States it's probably even more underreported than in developing countries because of access to healthy, clean drinking water," Murphy said. "If you're a healthy individual and you've got access to clean drinking water, chances are you're going to get severe diarrhea, but you're not going to die."

The research was funded by the National Institutes of Health, the Ohio University Research Committee and the Ohio University Heritage College of Osteopathic Medicine.

The collaborators on the PLoS ONE paper are University of Nevada, Las Vegas scientists Nicholas Egan and Helen Wing and University of Texas at Austin researcher Shelley Payne.

The PLoS ONE paper can be accessed online: http://dx.plos.org/10.1371/journal.pone.0038592

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>