Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new genes for cancer, other diseases in plants, yeast and worms

14.04.2010
From deep within the genomes of organisms as diverse as plants, worms and yeast, scientists have uncovered new genes responsible for causing human diseases such as cancer and deafness.

The University of Texas at Austin scientists exploited the fact that all life on Earth shares common ancestry, and therefore shares sets of genes.

They found genes in yeast, for example, that humans use to make veins and arteries, even though yeasts have no blood vessels at all. Yeasts use those same genes to fix their cell walls in response to stress.

"Basically, we figured out a way to discover the genetic basis for disease by looking at organisms other than humans and finding disease equivalents," says Edward Marcotte, professor of chemistry and biochemistry.

To find the new genes, Marcotte and his graduate students developed a computer algorithm that first sifts through vast sets of existing genomic data for worms, mice, yeast, plants and humans. The algorithm pairs up sets of genes that overlap between these organisms and humans.

In doing so, it highlights genes that are known to work together to do one thing in the non-human organism, but the function of which are not yet known in humans. The scientists can then test those new genes in the lab to determine their function.

"The basic essence of the method is that there are ancient modules of genes that have been reused in different contexts over time," says Marcotte. "So the yeast uses a particular module with a particular set of inputs and outputs to do one task. Humans use this same module with different inputs and outputs to do another."

In the case of blood vessel formation, or angiogenesis, the scientists found 62 genes that yeast use to fix their cell walls that matched with a few genes known to be responsible for vein and artery formation in humans.

Developmental biologist John Wallingford and his graduate students then tested the human equivalents of the 62 yeast genes in developing frog embryos in the lab. This confirmed that eight of those 62 genes help build blood vessels in animals. Several of these genes were also confirmed in humans.

The newly found human angiogenesis genes are great candidates for drugs, says Marcotte.

"Tumors fool your body into feeding them by initiating blood vessel growth, and that's the reason we're interested in angiogenesis," says Marcotte. "So, genes for angiogenesis are common targets for chemotherapy. Some of the most effective chemotherapies block angiogenesis."

The scientists also found a set of genes in nematode worms involved in human breast cancer. Surprisingly, it is the same set of genes in the worms responsible for determining how many male offspring a parent worm births.

In plants, they found a gene that is involved with a genetic disorder called Waardenburg syndrome, which causes a significant fraction of cases of human deafness. (Strangely, plants use the gene as part of their system for sensing gravity, called gravitropism.)

The researchers are teasing out genes for a variety of human disorders, from mental retardation and birth defects to cataracts. Their goal is to find new genetic targets for therapy.

"By exploiting evolution and looking at lower organisms that don't even have the organs we're looking for—blood vessels or even heads—but share some of the underlying molecular processes, we're able to discover genes relevant to human diseases," says Marcotte.

Marcotte admits it may seem odd to look for human disease genes in something like a plant or yeast, but that the information is proving to be extremely useful, if not surprising.

"When we found the genes in plants responsible for Waardenberg syndrome in humans," he says, "we were screaming in the halls."

Marcotte, Wallingford and colleagues published their research in PNAS (Proceedings of the National Academy of Sciences).

Marcotte and Wallingford are members of the Center for Systems and Synthetic Biology and the Institute for Cellular and Molecular Biology. Wallingford, associate professor of molecular cell and developmental biology, is a Howard Hughes Medical Institute Early Career Scientist. Co-authors Kriston McGary, Tae Joo Park, John Woods and Hye Ji Cha are graduate students at The University of Texas at Austin.

For more information contact: Edward Marcotte, professor of chemistry and biochemistry, 512-471-5435; John Wallingford, associate professor of molecular cell and developmental biology, 512-232-2784.

Lee Clippard | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>