Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find bone-marrow environment that helps produce infection-fighting T and B cells

25.02.2013
The Children's Medical Center Research Institute at UT Southwestern has deepened the understanding of the environment within bone marrow that nurtures stem cells, this time identifying the biological setting for specialized blood-forming cells that produce the infection-fighting white blood cells known as T cells and B cells.

The research found that cells called early lymphoid progenitors, which are responsible for producing T cells and B cells, thrive in an environment known as an osteoblastic niche. The investigation, published online today in Nature and led by Dr. Sean Morrison, also establishes a promising approach for scientists to map the entire blood-forming system.

Scientists already know how to manufacture large quantities of stem cells that give rise to the nervous system, skin, and other tissues. But they have been unable to make blood-forming stem cells in a laboratory, in part because of a lack of understanding about the niche in which blood-forming stem cells and other progenitor cells reside in the body.

"We believe this research moves us one step closer toward the development of cell therapies in the blood-forming system that don't exist today," said Dr. Morrison, Director of the Institute and Professor of Pediatrics at UT Southwestern Medical Center. "In understanding the environments for blood-forming stem cells and those of different kinds of progenitor cells, we can work toward reproducing those environments in the lab and growing cells that can be transplanted to treat a host of medical conditions."

These findings eventually may help increase the safety and effectiveness of bone-marrow transplants, such as those needed after healthy marrow is destroyed by radiation or chemotherapy treatments for childhood leukemia, Dr. Morrison said. The findings also may have implications for treating illnesses associated with loss of infection-fighting cells, such as HIV and severe combined immunodeficiency disease, better known as bubble boy disease.

The Nature study augments earlier work by Dr. Morrison and his team that showed endothelial cells and perivascular cells lining the blood vessels in the bone marrow create the environment that maintains haematopoietic stem cells, which produce billions of new blood cells every day. The latest study shows that bone-forming cells create the environment that maintains early lymphoid progenitors.

"Our research documents that there are different niches, or microenvironments, for blood-forming stem cells and restricted progenitors in the bone marrow," Dr. Morrison said. "One way that bone marrow makes different kinds of blood-forming cells is by compartmentalizing them into different neighborhoods within the marrow."

The researchers identified niches for stem cells and early lymphoid progenitors by determining which cells are the sources of a growth factor (CXCL12) necessary for the proliferation of those two populations of blood-forming cells. By taking the same approach for other growth factors in the bone marrow, researchers should be able to map the niches for every kind of blood-forming progenitor cell in the bone marrow, Dr. Morrison said.

The UTSW paper's first author is Dr. Lei Ding, a former postdoctoral research fellow at the Children's Research Institute and the Howard Hughes Medical Institute (HHMI) at UT Southwestern. Dr. Ding is now an assistant professor at Columbia University.

Research support came from the HHMI and the National Heart, Lung, and Blood Institute.

About the Children's Research Institute

Children's Medical Center Research Institute at UT Southwestern (CRI) is a joint venture positioned to build upon the comprehensive clinical expertise of Children's Medical Center and the internationally recognized scientific environment of UT Southwestern Medical Center. CRI's mission is to perform transformative biomedical research to better understand the biological basis of disease. Established in 2011, CRI is creating interdisciplinary groups of exceptional scientists and physicians to pursue research at the interface of regenerative medicine, cancer biology and metabolism, which together hold unusual potential for discoveries that can yield groundbreaking advances in science and medicine.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Jeff Carlton | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>