Scientists find a groovy way to influence specialization of stem cells

Stem cells are capable of becoming any cell type within the body through the process of differentiation.

The discovery has the potential for application in the development of new therapies for a range of medical treatments where scientists aim to replace or regenerate tissues that have become diseased or dysfunctional.

Publishing in the journal Scientific Reports, the researchers found that growing adult stem cells on micro-grooved surfaces disrupts the biochemical pathway that determines the length of the primary cilia. This change in length of the structure ultimately controls the subsequent behaviour of the stem cells.

“Primary cilia are a thousand times smaller than the width of a human hair and are a ubiquitous feature of most cell types but were once thought to be irrelevant. However, our research shows that they play a key role in stem cell differentiation,” explains co-author Professor Martin Knight from Queen Mary's School of Engineering and Materials Science and the Institute of Bioengineering.

“We found it's possible to control stem cell specialisation by manipulating primary cilia elongation, and that this occurs when stem cells are grown on these special grooved surfaces.”

Stem cells are being considered to treat a number of degenerative conditions such as arthritis, Alzheimer's disease and Parkinson's disease.

This work was funded by the Wellcome Trust.

'Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells' will be published in the journal Scientific Reports on Wednesday 18 December 2013.

Media Contact

Neha Okhandiar EurekAlert!

More Information:

http://www.qmul.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors