Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find 'bully' genes in common childhood tumor

03.12.2012
Neuroblastoma patients with ARID1A and ARID1B mutations have more aggressive diseas

In a genome sequencing study of 74 neuroblastoma tumors in children, scientists at the Johns Hopkins Kimmel Cancer Center and the Children's Hospital of Philadelphia (CHOP) found that patients with changes in two genes, ARID1A and ARID1B, survive only a quarter as long as patients without the changes. The discovery could eventually lead to early identification of patients with aggressive neuroblastomas who may need additional treatments.

Neuroblastomas affect nerve tissue throughout the body and are the most common, non-blood cancer in children. "These cancers have a wide spectrum of clinical outcomes, with some that are highly curable and others very lethal," says Victor Velculescu, M.D., Ph.D., professor of oncology and co-director of the Cancer Biology Program at Johns Hopkins. "Part of the reason for this variety in prognosis may be due to changes in the ARID1A and ARID1B genes."

Velculescu said these powerful "bully" genes were not identified in other gene sequencing studies of neuroblastoma, most likely because the Johns Hopkins-CHOP researchers used sequencing and analytical methods that looked for larger, structural rearrangements of DNA in addition to changes in the sequence of individual chemical base-pairs that form DNA. A report of their work appears in the Dec. 2 issue of Nature Genetics.

Of the 74 tumors in the study, 71 were analyzed for both rearrangements and base-pair changes. Cancer-specific mutations were found in a variety of genes previously linked to neuroblastoma, including the ALK and MYCN genes. In eight of the 71 patients, the investigators found alterations in the ARID1A and ARID1B genes, which normally control the way DNA folds to allow or block protein production.

The children with ARID1A or ARID1B gene changes had far worse survival, on average, than those without the genetic alterations — 386 days compared with 1,689 days. All but one of these patients died of progressive disease, including one child whose neuroblastoma was thought to be highly curable.

The scientists were also able to detect and monitor neuroblastoma-specific genetic changes in the blood of four patients included in the study, and correlated these findings to disease progression.

"Finding cancer-specific alterations in the blood could help clinicians monitor patients for relapse and determine whether residual cancer cells remain in the body after surgery," says Mark Sausen, a Johns Hopkins graduate student and one of the lead scientists involved in the research.

The Johns Hopkins-CHOP team plans to conduct further studies in larger groups of patients to confirm the ARID1A-ARID1B correlation to prognosis.

Funding for the study was provided by the St. Baldrick's Foundation, the Virginia and D.K. Ludwig Fund for Cancer Research, Swim Across America, the American Association for Cancer Research – Stand Up To Cancer's Dream Team Translational Cancer Research Grant, and the National Institutes of Health's National Cancer Institute (CA121113).

In addition to Velculescu and Sausen, scientists involved in the research include Rebecca Leary, Sian Jones, Jian Wu, Amanda Blackford, Luis Diaz, Nickolas Papadopoulos, Bert Vogelstein, and Kenneth Kinzler from Johns Hopkins; C. Patrick Reynolds from Texas Tech University Health Sciences Center; Giovanni Parmigiani from the Dana-Farber Cancer Institute; and Michael Hogarty and Xueyuan Liu from the Childrens Hospital of Philadelphia.

Papadopoulos, Kinzler, Vogelstein, Diaz and Velculescu are co-founders of Inostics and Personal Genome Diagnostics and are members of the companies' Scientific Advisory Boards. They own Inostics and Personal Genome Diagnostics stock, which is subject to certain restrictions under Johns Hopkins University policy. The terms of these arrangements are managed by The Johns Hopkins University in accordance with its conflict-of-interest policies.

Media Contacts:
Vanessa Wasta, 410-614-2916, wasta@jhmi.edu
Amy Mone, 410-614-2915, amone1@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure
14.11.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>