Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Excise Vector, Exotic Genes from Induced Stem Cells

30.03.2009
A team of University of Wisconsin-Madison researchers reports that it has created induced human pluripotent stem (iPS) cells completely free of viral vectors and exotic genes.

By reprogramming skin cells to an embryonic state using a plasmid rather than a virus to ferry reprogramming genes into adult cells, the Wisconsin group’s work removes a key safety concern about the potential use of iPS cells in therapeutic settings.

The new method, which is reported in today’s (March 26) online issue of the journal Science, also removes the exotic reprogramming genes from the iPS equation, as the plasmid and the genes it carries do not integrate into an induced cell’s genome and can be screened out of subsequent generations of cells. Thus, cells made using the new method are completely free of any genetic artifacts that could compromise therapeutic safety or skew research results, according to the Science report.

The new work was conducted in the laboratory of James Thomson, the UW-Madison scientist who was the first to successfully culture human embryonic stem cells in 1998 and, in 2007, co-discovered a way to make human-induced pluripotent stem cells. Thomson, a professor in the UW-Madison School of Medicine and Public Health, is also the director of regenerative biology for the Morgridge Institute for Research, the private, nonprofit side of the new Wisconsin Institutes for Discovery at UW-Madison.

“We believe this is the first time human-induced pluripotent stem cells have been created that are completely free of vector and transgene sequences,” says Thomson.

The new study was led by geneticist Junying Yu, the Wisconsin researcher who, with Thomson, co-discovered a method for reprogramming adult skin cells to behave like embryonic stem cells, the master cells that arise at the earliest stages of development and that ultimately develop into all 220 cell types in the human body.

While the methods first devised for reprogramming adult cells yielded embryonic-like cells, the process resulted in the permanent integration of both viral genes and the genes used for reprogramming into the genomes of the newly induced cells. Such genetic baggage posed safety concerns for potential therapies like cell transplants, and confounded work in the lab, as the introduced genes sometimes spurred mutations that interfered with the normal function of induced cells.

The new work was accomplished using a plasmid, a circle of DNA, and cells from the foreskins of newborns. “The plasmids carry all the needed transgenes, but don’t integrate into the host DNA, they just float around as episomes” in the cell, Thomson says.

The plasmids replicate, but they do so somewhat inefficiently, Thomson explains, so that after they perform the job of reprogramming, they can subsequently be weeded out, leaving the induced cells free of any exotic genetic material. “Once the transgenes have done their job and are no longer needed, one can merely recover induced pluripotent stem cells that have lost their episomes.”

The resulting cells, says Thomson, are remarkably similar to embryonic stem cells and show the same capacity to proliferate indefinitely in culture and diversify into all the cell types of the human body.

“The recent discovery that adult cells could be reprogrammed to iPS cells that resemble embryonic stem cells opened up tremendous potential for regenerative medicine,” says Marion Zatz of the National Institute of Health’s National Institute of General Medical Sciences, which partially funded the new work. “However, the early methods posed significant risks in using iPS cells in a clinical setting. This latest discovery by Thomson’s group of a new method for generating iPS cells without inserting viral vectors into the cells’ genetic material is a major advance toward safely reprogramming cells for clinical use.”

Thomson notes that researchers have developed other promising approaches using mouse cells, and previously had removed most of the vector and exogenous gene sequences from human-induced pluripotent stem cells. However, those efforts did not succeed in removing all of the genetic artifacts of reprogramming, which could still result in mutations in induced cells.

“Given the rapid pace of the field, it won’t be surprising if there are several alternative methods for producing vector and transgene free cells very soon,” says Thomson. “However, it will be essential to determine which of these methods most consistently produces induced pluripotent stem cells with the fewest genetic abnormalities. Any problems would impact research, drug development and possible transplantation therapies.”

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>