Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover new features of molecular elevator


Biophysicists from the Moscow Institute of Physics and Technology and the University of Groningen in the Netherlands have visualized a nearly complete transport cycle of the mammalian glutamate transporter homologue from archaea.

They confirmed that the transport mechanism resembles that of an elevator: A "door" opens, ions and substrate molecules come in, the door closes, and they travel through the membrane.

This is a molecular elevator.

Credit: Daria Sokol/MIPT Press Office

Presumably the mammalian transporters operate the same way, so this discovery is potentially important for developing new treatments for schizophrenia and other mental illnesses caused by malfunctioning of these transporters. The research was published in the journal Nature Communications.

Nerve impulses travel through the human body in the form of chemical signals or electric charges, as ion currents. Neurons, the cells of the nervous system, can generate and propagate electrical signals. A neuron consists of a cell body with projections of two types: multiple dendrites and a single axon.

The cell body and the dendrites serve as an antenna picking up signals from other neurons. By summing and processing all of the input signals, the neuron generates its own impulses that are then passed on to the neighboring neuron.

The electric impulse in an axon is similar to the electric current in wires, but it is carried by sodium and calcium ions, rather than electrons. That said, electrical signal transmission is only possible within a neuron. The signals transmitted between neurons are of a chemical nature and involve special structures, called synapses.

The signal in a synapse is usually carried by chemicals called neurotransmitters. A neuron releases neurotransmitters into the synaptic cleft, and the membrane of the receiving neuron recognizes the neurotransmitter via a dedicated receptor.

Another hidden yet vital stage in this process is that the neurotransmitter molecules must be removed from the synaptic cleft to enable the next pulse transmission. Otherwise, the receiving neuron will be overstimulated.

Neurotransmitters are cleared out by dedicated transporters that pump these molecules from the synaptic cleft back into the cell body. These transporters are located either in the synapses of neurons or in the so-called glial cells, which provide support and protection for neurons (fig. 1).

Glutamate is the main excitatory neurotransmitter in the human brain. When glutamate is released into the synaptic cleft, this excites the next neuron in the sequence. The human nervous system also has inhibitory neurotransmitters, for example GABA (gamma-Aminobutyric acid), which snuff out any potential in the neuron when released.

The glutamate transporter clears out glutamate from the synaptic cleft. This process is crucial to the functioning of the human brain. The inhibition of glutamate removal from the cleft is linked to many neurodegenerative diseases and mental disorders, including schizophrenia.

Quite often we can learn a lot about someone by just looking at their relatives. The same holds true for evolutionary similar proteins, called homologues. The group of Russian and Dutch scientists has resolved a conformational ensemble of the aspartate transporter from archaea, which is homologous to the glutamate transporters in humans.

Until recently, X-ray crystallography was the main technique for studying the 3D structures of proteins. The main challenge faced by that method is crystallizing proteins to obtain diffraction images from crystals. Membrane proteins tend not to form well-diffracting crystals easily.

To overcome this bottleneck, another technique called cryo-electron microscopy can be used. In cryo-EM a vitrified sample is irradiated by an electron beam and the collected images are combined, yielding a three-dimensional reconstruction of the protein. The obtained model is analyzed and can be used to design new drugs.

The structure of the mammalian glutamate transporter homologue was determined using a cryo-electron microscope at the University of Groningen in the Netherlands.

These proteins consist of three individual molecules, hence they form trimers. Each individual protomer consists of two parts: the immobile part fixed in the membrane and the mobile transport domain resembling an elevator. The study has revealed 15 protomer structures (in five trimers), including intermediate conformations. The team also confirmed independent movements of transport domains.

"These structures help us explain how these proteins prevent sodium leakage," the head of the MIPT Laboratory of Structural Electron Microscopy of Biological Systems, Albert Guskov explained. "Just like in an elevator, the transport domain has a door, and as long as it stays open, the elevator will not move. But once the sodium ions and the substrate -- in this case, the aspartate molecules -- enter the elevator, the door closes, and off it goes. So, if there are only sodium ions present, this is not enough to close the door."

"This makes the transport very efficient, which is particularly important in the case of human proteins, since it's not merely about eating up the aspartate -- like in archaea -- but about information transfer between neurons," the scientist added.

The Laboratory of Structural Electron Microscopy of Biological Systems, led by Professor Guskov, is establishing a modern scientific infrastructure at MIPT, enabling the full-cycle research on single-particle cryo-EM in Russia. In 2019, the team launched a research platform based on the cryo-electron microscope FEI Polara G2 with further plans to upgrade it to the state-of-the-art microscope.

"The competences of the laboratory are in high demand in the Russian scientific community, and the expanding international academic network enables the access to modern scientific infrastructure. Such infrastructure opens new opportunities for studying the fundamental questions of biology, such as the mechanisms of functions of ion channels and transporters, interactions within protein complexes, etc. It also helps us find industrial partners that would conduct research toward applying our findings in drug design and elsewhere in medicine," Professor Guskov commented.

Media Contact

Varvara Bogomolova


Varvara Bogomolova | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Protein linked to cancer acts as a viscous glue in cell division
08.07.2020 | Rensselaer Polytechnic Institute

nachricht Enzymes as double agents: new mechanism discovered in protein modification
08.07.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities

08.07.2020 | Physics and Astronomy

Engineers use electricity to clean up toxic water

08.07.2020 | Agricultural and Forestry Science

Atomic 'Swiss army knife' precisely measures materials for quantum computers

08.07.2020 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>