Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new method of proton transfer

22.03.2012
In a paradigm shift in the understanding of chemical reactions, a team from USC and Lawrence Berkeley National Lab finds that protons do not have to move along hydrogen bonds after all

Scientists at USC and Lawrence Berkeley National Lab have discovered a new route by which a proton (a hydrogen atom that lost its electron) can move from one molecule to another – a basic component of countless chemical and biological reactions.

"This is a radically new way by which proton transfer may occur," said Anna Krylov, professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences. Krylov is a co-corresponding author of a paper on the new process that was published online by Nature Chemistry on March 18.

Krylov and her colleagues demonstrated that protons are not obligated to travel along hydrogen bonds, as previously believed. The finding suggests that protons may move efficiently in stacked systems of molecules, which are common in plant biomass, membranes, DNA and elsewhere.

Armed with the new knowledge, scientists may be able to better understand chemical reactions involving catalysts, how biomass (plant material) can be used as a renewable fuel source, how melanin (which causes skin pigmentation) protects our bodies from the sun's rays, and damage to DNA.

"By better understanding how these processes operate at molecular level, scientists will be able to design new catalysts, better fuels, and more efficient drugs," Krylov said.

Hydrogen atoms are often shared between two molecules, forming a so-called hydrogen bond. This bond determines structures and properties of everything from liquid water to the DNA double helix and proteins.

Hydrogen bonds also serve as pathways by which protons may travel from one molecule to another, like a road between two houses. But what happens if there's no road?

To find out, Krylov and fellow corresponding author Ahmed Musahid of the Lawrence Berkeley National Lab created a system in which two molecules were stacked on top of each other, without hydrogen bonds between them. Then they ionized one of the molecules to coax a proton to move from one place to another.

Ahmed and Krylov discovered that when there's no straight road between the two houses, the houses (molecules) can rearrange themselves so that their front doors are close together. In that way, the proton can travel from one to the other with no hydrogen bond – and with little energy. Then the molecules return to their original positions.

"We've come up with the picture of a new process," Krylov said.

This research was performed under the auspices of the iOpenShell Center and supported by the US Department of Energy, the Defense Threat Reduction Agency, and the National Science Foundation.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>