Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How to Map Cell-Signaling Molecules to Their Targets

10.09.2013
University of Montreal, McGill researchers develop new method to link signaling molecules to target regulators of cell division

A team of University of Montreal and McGill University researchers have devised a method to identify how signaling molecules orchestrate the sequential steps in cell division.


Conrad Hall, McGill University

A mitotic spindle hub (the orange and grey hub-and-spoke structure) primed by Cdk-Clb3 signaling (red).

In an article published online today in the Proceedings of the National Academy of Sciences, the scientists explain how they could track the relationship between signaling molecules and their target molecules to establish where, when and how the targets are deployed to perform the many steps necessary to replicate an individual cell’s genome and surrounding structures.

Breakdowns in individual steps in these processes are a hallmark of a number of diseases, including cancers. The method outlined in the PNAS paper could provide a valuable tool to researchers seeking to better understand these processes.

“How living cells divide and how this process is accurately achieved are among the deepest questions scientists have been addressing for decades,” said Dr. Stephen Michnick, co-senior investigator and a University of Montreal biochemistry professor. Co-senior investigator Jackie Vogel, a biology professor at McGill, said, “We know what are the main players in cell division – molecules called cyclins and a common actuator molecule called Cdk1 – but it has proved a vexing problem to figure out precisely how the cyclin-Cdk1 partners deploy target molecules to orchestrate everything that must happen and in precisely the right order to assure accurate cell division.”

The University of Montreal and McGill team worked out a method to identify interactions between cyclin-Cdk1 (cyclin-dependent kinase 1) complexes and their targets in living cells. Cdk1 is a signaling protein that plays a key role in cell division – it has been studied extensively in yeast, because of yeast’s rapid reproduction, and is found in many other living organisms including humans. “It is a simple method that could be performed in any laboratory, unlike existing methods that are much more labor- and skill-intensive,” said Dr. Michnick.

“The method also picks up cyclin-Cdk1 interactions that traditional methods don’t,” added Dr. Vogel. “For instance, we study the assembly of a massive molecular machine called the mitotic spindle, a structure that orchestrates the coordinated separation of two copies of the genome between the two new cells that emerge from division. We’d been chasing, for over a decade, an elusive link between a specific cyclin called Clb3-Cdk1 complex and a spindle target called gamma-tubulin that we thought could be a key step in building mitotic spindles accurately. All evidence pointed to this interaction, including a massive effort I was involved in to map out cellular communication directed to the centrosome, a molecular machine that organizes assembly of the mitotic spindle. So we teamed up with Dr. Michnick to try the new method and out popped the Clb3-Cdk1-gamma tubulin interaction -- just like that.” Now, in collaboration with Paul François, a physics professor at McGill, the researchers have been able to use this information to show that the Clb3-Cdk1-gamma-tubulin interaction controls a massive remodeling of the mitotic spindle.

“The tool that we’ve developed will be available to the scientific community and concerted efforts by many labs may ultimately unlock the mysteries of one of life’s most essential processes,” said Dr. Michnick.

Notes:
The University of Montreal is known officially as Université de Montréal. The research involved in the study “Dissection of Cdk1–cyclin complexes in vivo” was financed by Canadian Institutes of Health Research (CIHR) grants MOP-GMX-192838 and MOP-GMX- 231013 to Dr. Michnick and CIHR grant MOP-123335 and Natural Sciences and Engineering Research Council (Canada) grant RGPIN 262246 to Dr. Vogel. This press release references findings by Keck et al., Science 2011 and Nazarova et al. Molecular Biology of the Cell, 2013.
About the University of Montreal: www.umontreal.ca/english
About McGill University: www.mcgill.ca
About the Department of Biochemistry www.bcm.umontreal.ca
About the Department of Biology http://biology.mcgill.ca
About Dr. Michnick’s research: michnick.bcm.umontreal.ca/Michnicklab
About Dr. Vogel’s research: http://aguada.biol.mcgill.ca
Contact:
Chris Chipello
Media Relations Office
McGill University
Tel. 514-398-4201 | christopher.chipello@mcgill.ca
William Raillant-Clark
International Press Attaché
University of Montreal (officially Université de Montréal)
Tel: 514-343-7593 | w.raillant-clark@umontreal.ca | @uMontreal_News
http://www.mcgill.ca/newsroom/
http://twitter.com/McGillU

Chris Chipello | Newswise
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>