Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new genetic variation that contributes to diabetes

09.09.2009
Scientists have identified a genetic variation in people with type 2 diabetes that affects how the body's muscle cells respond to the hormone insulin, in a new study published today in Nature Genetics. The researchers, from Imperial College London and other international institutions, say the findings highlight a new target for scientists developing treatments for diabetes.

Previous studies have identified several genetic variations in people with type 2 diabetes that affect how insulin is produced in the pancreas. Today's study shows for the first time a genetic variation that seems to impair the ability of the body's muscle cells to use insulin to help them make energy.

People with type 2 diabetes can have problems with the body not producing enough insulin and with cells in the muscles, liver and fat becoming resistant to it. Without sufficient insulin, or if cells cannot use insulin properly, cells are unable to take glucose from the blood and turn it into energy. Until now, scientists had not been able to identify the genetic factors contributing to insulin resistance in type 2 diabetes.

In the new research, scientists from international institutions including Imperial College London, McGill University, Canada, CNRS, France, and the University of Copenhagen, Denmark, looked for genetic markers in over 14,000 people and identified four variations associated with type 2 diabetes. One of these was located near a gene called IRS1, which makes a protein that tells the cell to start taking in glucose from the blood when it is activated by insulin. The researchers believe that the variant they have identified interrupts this process, impairing the cells' ability to make energy from glucose. The researchers hope that scientists will be able to target this process to produce new treatments for type 2 diabetes.

Professor Philippe Froguel, one of the corresponding authors of today's study from the Department of Genomic Medicine at Imperial College London, said: "We are very excited about these results - this is the first genetic evidence that a defect in the way insulin works in muscles can contribute to diabetes. Muscle tissue needs to make more energy using glucose than other tissues. We think developing a treatment for diabetes that improves the way insulin works in the muscle could really help people with type 2 diabetes.

"It is now clear that several drugs should be used together to control this disease. Our new study provides scientists developing treatments with a straightforward target for a new drug to treat type 2 diabetes," added Professor Froguel.

The researchers carried out a multistage association study to identify the new gene. First, they looked at genome-wide association data from 1,376 French individuals and identified 16,360 single-nucleotide polymorphisms (SNPs), or genetic variations, associated with type 2 diabetes. The researchers then studied these variations in 4,977 French individuals.

Next, the team selected the 28 most strongly associated SNPs and looked for them in 7,698 Danish individuals. Finally, the researchers identified four SNPs strongly associated with type 2 diabetes. The most significant of these variations was located near the insulin receptor substrate 1, or IRS1, gene.

To test their findings, the team analysed biopsies of skeletal muscle from Danish twins, one of whom had type 2 diabetes. They found that the twin with diabetes had the variation near IRS1 and this variation resulted in insulin resistance in the muscle. They also noted that the variation affected the amount of protein produced by the gene IRS1, suggesting that the SNP controls the IRS1 gene.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>