Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover genes linking puberty timing to body fat in women

22.11.2010
Researchers at King's College London's Department of Twin Research have discovered, as part of a large international consortium, 30 new genes that control the age of sexual maturation in women, the Journal Nature Genetics publishes today.

Many of these genes are also known to act on body weight regulation or biological pathways related to fat metabolism. This large new study of more than 100,000 women from Europe, US and Australia highlights several specific genetic links between early puberty and body fat.

Puberty in women normally occurs between 11 – 14 years of age. If a child reaches a particular weight (around 45 kg), the onset of puberty is triggered. The heavier the child, the earlier puberty occurs, possibly affecting risk of later disease.

The study also found genes involved in hormone regulation, cell development and other mechanisms linked to age at menarche (the onset of menstrual periods in women), and this shows that puberty timing is controlled by a complex range of biological processes.

Massimo Mangino, author from the Twin Research Department at King's, says: 'It is fascinating how common genetic variants influence both early puberty and weight gain. The findings give us clues on how intricately linked are different biological processes.'

Professor Tim Spector, Director of Twins UK cohort said: 'This study shows the power of large genetic collaborations allowing us great insights into how puberty is triggered by precise amounts of body fat. Twin pairs are very similar for both puberty and body fat.'

For further information please contact the King's College London press office on: 0207 848 4334, or emma.reynolds@kcl.ac.uk. Alternatively, please contact Professor Tim D Spector, Department of Twin Research and Genetic Epidemiology, King's College London on: Tel: +44 (0) 20 7 188 6765 Email: victoria.vazquez@kcl.ac.uk

Notes to editors:

The Nature Genetics paper, 'Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies', is available on request.

The researchers are extremely grateful to all study participants for making this research possible. The investigators would also like to acknowledge the support provided by the Wellcome Trust and the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London.

The comprehensive Biomedical Research Centre

The comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, is one of five National Institute for Health Research (NIHR) comprehensive Biomedical Research Centres in England. With its strong focus on 'translational research' across seven research themes and a number of cross-cutting disciplines, it aims to take advances in basic medical research out of the laboratory and into the clinical setting to benefit patients at the earliest opportunity. Access to the uniquely diverse patient population of London and the south east enables it to drive forward research into a wide range of diseases and medical conditions.

Website: www.biomedicalresearchcentre.org

King's College London

King's College London is one of the top 25 universities in the world (2010 QS international world rankings), The Sunday Times 'University of the Year 2010/11' and the fourth oldest in England. A research-led university based in the heart of London, King's has nearly 23,000 students (of whom more than 8,600 are graduate students) from nearly 140 countries, and some 5,500 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

King's has a particularly distinguished reputation in the humanities, law, the sciences (including a wide range of health areas such as psychiatry, medicine, nursing and dentistry) and social sciences including international affairs. It has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and research that led to the development of radio, television, mobile phones and radar. It is the largest centre for the education of healthcare professionals in Europe; no university has more Medical Research Council Centres.

King's College London and Guy's and St Thomas', King's College Hospital and South London and Maudsley NHS Foundation Trusts are part of King's Health Partners. King's Health Partners Academic Health Sciences Centre (AHSC) is a pioneering global collaboration between one of the world's leading research-led universities and three of London's most successful NHS Foundation Trusts, including leading teaching hospitals and comprehensive mental health services.

Emma Reynolds | EurekAlert!
Further information:
http://www.kcl.ac.uk
http://www.kingshealthpartners.org

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>