Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover gene mutation responsible for hereditary neuroendocrine tumor

27.07.2009
A single nucleotide change in the SDH5 gene confers tumor susceptibility

University of Utah researchers and their colleagues have identified the gene that is mutated in a hereditary form of a rare neuroendocrine tumor called paraganglioma (PGL).

The gene, called hSDH5, is required for activation of an enzyme complex that plays a critical role in the chemical reactions that take place within cells to convert biochemical energy into usable energy. This study will be published in the journal Science, to be released online in Science Express on July 23, 2009.

Paragangliomas are rare, generally benign tumors that arise from cells called glomus cells, which are located along blood vessels and play a role in regulating blood pressure and blood flow. Approximately 25 percent of paragangliomas are hereditary. Of the four familial PGL syndromes, three forms have previously been associated with mutations in genes of the succinate dehydrogenase (SDH) complex, an enzyme complex involved in the ability of cells to extract energy from nutrients.

Studies in Yeast

"Defects in mitochondria, the power sources of the cell, have been implicated in a variety of human disorders, including cancer," says Jared Rutter, PhD, associate professor of biochemistry at the University of Utah School of Medicine, investigator at the University's Huntsman Cancer Institute, and lead author of the study. "Because it is incredibly difficult to perform in-depth studies in humans, we decided to use a much simpler model system, the yeast Saccharomyces cerevisiae, in order to study mitochondrial functions before going back to humans and determining whether what we learned in yeast was also relevant to humans. Following this strategy, we first characterized a mitochondrial protein called Sdh5 in yeast and then moved on to study its potential role in human disease."

Sdh5 is a mitochondrial protein that is highly conserved, meaning that it has remained largely unchanged throughout the course of evolution and likely performs similar essential cellular functions in both yeast and humans. Rutter and his colleagues discovered that, in yeast, the Sdh5 protein is needed for the SDH complex to function normally. They also found that Sdh5 is required for activation of another protein called Sdh1 that is also part of the SDH complex.

Studies in Humans

"The amino acid sequence of yeast Sdh5 is 44 percent identical to its human counterpart, which we've named hSDH5. This gave us some confidence that the Sdh5 functions we discovered in yeast would also be carried out by human hSdh5," explains Rutter. "Previous genetic studies have shown that the hereditary paragangliomas PGL1, PGL3, and PGL4 are associated with mutations causing loss of SDH activity. Although the gene for PGL2 had not been identified, we knew that it was located on the same chromosome as the hSDH5 gene."

Rutter and his colleagues sequenced the hSDH5 gene in three individuals with PGL2 from a previously described Dutch lineage. They identified a single DNA nucleotide change which resulted in a mutation in the most conserved region of the protein. Of the 45 individuals within the affected lineage who inherited the mutation, 33 have developed PGL2, providing strong evidence that hSDH5 is the PGL2 gene. The seven individuals who inherited the mutation from their mothers are unaffected, suggesting an inheritance pattern that is specific to the parent of origin.

The researchers also discovered that, as in yeast, the inactivation of hSDH5 dramatically impaired the activity of the SDH complex, which was decreased by approximately 95% in tumors from three patients with PGL2.

Implications on Genetic Testing

The identification of hSDH5 as the PGL2 gene has potential clinical implications for patients with familial PGL syndromes. Genetic testing is suggested for the management of PGL, even when it does not seem to be inherited, in order to identify individuals who are at risk for developing tumors.

"Individuals with familial PGLs tend to be affected at a younger age with tumors at multiple sites," says Rutter. "Including hSDH5 in DNA screening will allow for more comprehensive genetic testing, as well as earlier detection and treatment."

Huaixiang Hao, a graduate student in Rutter's laboratory, conducted the majority of the experiments in this study. Other study contributors include Oleh Khalimonchuk, Ph.D. and Dennis Winge, Ph.D. in the department of medicine at the University of Utah and Joshua Schiffman, M.D. and Brandon Bentz, M.D. from Huntsman Cancer Institute. Noah Dephoure, Ph.D. and Steven Gygi, Ph.D. from Harvard Medical School, as well as a number of Dutch scientists, were also involved in the study.

Kathy Wilets | EurekAlert!
Further information:
http://www.hci.utah.edu

Further reports about: Cancer DNA Dutch landscape Genetic clues PGL PGL2 SDH Science TV Sdh5 blood vessel chemical reaction hSDH5 gene

More articles from Life Sciences:

nachricht Joining forces for immune research
13.08.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>