Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover enzyme that 'cleans' cancer cells

01.02.2010
Scientists have discovered that an enzyme can rid cells of a gene believed to be responsible for a wide range of cancers.

Dr Jorg Hartkamp and Dr Stefan Roberts have found that the protease HtrA2 can “clean” cells of the oncogene WT1, which is found at high levels in many leukaemias and solid cancers such as breast and lung cancer.

Their work has given drug designers a new target which will allow them to develop treatments for all these cancers in which WT1 expression is elevated.

WT1 is a well-known factor in cancer, having been discovered 20 years ago. It suppresses the development of Wilms’ tumour of the kidney, a rare cancer that affects one in 10,000 children. However it has a cancer causing role in other forms of the disease, particularly leukemias such as acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML).

In addition high expression of WT1 is associated with a bad prognosis in AML patients, while trials using peptide vaccines against WT1 in patients with lung cancer, breast cancer and leukaemia were promising.

This latest study – published in the journal Molecular Cell and funded by the Wellcome Trust, Cancer Research UK and the Association of International Cancer Research (AICR) – is the first to identify the enzyme that can rid cells of WT1.

Dr Hartkamp, at the University of Manchester’s Faculty of Life Sciences, said: “The cancer causing role of WT1 has been known for many years, but how it worked was not understood so we studied a regulatory domain of WT1 to see what modified its activity. We carried out a fishing experiment and discovered the role of the protease HtrA2 instead, by accident. This discovery has a much bigger impact.

“We have filled in the black box of WT1. It is this protease that is doing the trick – it can clean cells of WT1.”

Dr Roberts, who initiated the work at Manchester and is now at the University at Buffalo, added: “There are great prognostic implications in leukaemias but this protease may have even more targets. It is unlikely that a protease cleaves only one transcription factor such as WT1.”

Dr Lesley Walker, director of cancer information at Cancer Research UK, said: “This research sheds new light about how levels of WT1 are controlled and will help us understand more about its role in cancer. Although still at an early stage, this research is an exciting advance and could help to improve the treatment of types of cancer where WT1 is known to have an influence.”

AICR's Scientific Adviser Dr Mark Matfield said: “This exciting new finding shows why it is so important to carry out basic research into cancer. More and more these days, we see basic research discovering something unexpected about cancer that could be a major new step forward. The more we find out about cancer the closer we get to beating it.”

The team plans to study HtrA2 further, to find out how it is inactivated in cancer cells (allowing WT1 to proliferate) and what other targets HtrA2 has. This will help pharmaceutical companies design a drug to reactivate HtrA2 and apply the protease to different diseases.

It is hoped that patients will be screened for a high level of WT1 and, if this is the case, clinicians can reactivate HtrA2. And as WT1 expression is low in healthy adults, oncogenic expression of WT1 has been found to be tumour specific so targeting WT1 will be less damaging to the patient’s general health.

Notes for editors
The paper ‘The Wilms’ Tumour Suppressor Protein WT1 is processed by the serine protease HtrA2/Omi’ is available at http://www.cell.com/molecular-cell/fulltext/S1097-2765(09)00954-X

For more information or an interview with Dr Jorg Hartkamp, contact Media Relations Officer Mikaela Sitford on 0161 275 2111, 07768 980942 or Mikaela.Sitford@manchester.ac.uk

Mikaela Sitford | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>