Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover what drives the development of a fatal form of malaria

20.08.2008
The culprit: one's own immune system

Platelets – those tiny, unassuming cells that cause blood to clot and scabs to form when you cut yourself – play an important early role in promoting cerebral malaria, an often lethal complication that occurs mostly in children.

Affecting as many as half a billion people in tropical and subtropical regions, malaria is one of the oldest recorded diseases and the parasite responsible for it, Plasmodium, among the most studied pathogens of all time. Still, cerebral malaria, which results from a combination of blood vessel and immune system dysfunction, is not well understood.

In a study described in the August 14 issue of Cell Host and Microbe, Johns Hopkins researchers reveal that when red blood cells are infected with the malaria parasite, they activate platelets to secrete the PF4 protein, which triggers the immune system to inflame blood vessels and obstruct capillaries in the brain; both are hallmarks of cerebral malaria.

In their experiments, the Hopkins team first infected human red blood cells in culture with the malaria parasite and found that this did, indeed, induce platelet activation.

The researchers then infected separate sets of live mice with the malaria parasite: one set treated so that it lacked platelets altogether and two others treated with aspirin or Plavix, platelet inhibitors that prevent the release of PF4.

The survival rate of mice without platelets as well as those treated with inhibitors was improved over that of the mice left alone, but only when the treatment began very soon after infection. When researchers started treating mice with platelet inhibitors one day after infecting them, those mice survived more often than control mice. However, when researchers waited until after three days to treat infected mice with platelet inhibitors, that group did no better in terms of survival.

"Cerebral malaria is lethal 20 percent of the time in the best of hands, and here we've shown that something as simple as aspirin, because of its affect on platelets, might be able to improve the outcomes of those who contract this deadly form of the disease," says David Sullivan M.D., an associate professor of molecular microbiology and immunology in the Johns Hopkins University Bloomberg School of Public Health.

To make the specific connection between PF4 and malaria, the scientists compared the responses to malaria infection by so-called "wild type" normal mice and mice genetically engineered to lack pF4. They found that the amount of parasite in the blood was the same in both sets of mice. The notable difference was in the animals' immune responses to that same parasite burden. More than 60 percent of the mice lacking PF4 were still alive after day 10, while only 30 percent of the mice with PF4 survived that long.

"The take-home lesson is that platelets, by releasing PF4, are playing an early role in the wind-up phase of cerebral malaria," says Craig Morrell, DVM, Ph.D., an assistant professor of molecular and comparative pathobiology at the Johns Hopkins University School of Medicine. "Our mouse studies show that timing is critical; with the mice, we know when we infected them and controlled when we treated them. A big challenge in translating this to humans is that people don't know when they get infected.

"Platelets don't get any respect, but they're the second most abundant cell in the blood after red blood cells and packed full of factors that rally the immune system to action. By taking what we know about platelets and their activation and applying it to malaria, we have found a driver of cerebral malaria."

Beth Simpkins | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>