Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create Road Map to Metabolic Reprogramming for Aging

03.12.2012
In efforts to understand what influences life span, cancer and aging, scientists are building roadmaps to navigate and learn about cells at the molecular level.

To survey previously uncharted territory, a team of researchers at UW-Madison created an “atlas” that maps more than 1,500 unique landmarks within mitochondria that could provide clues to the metabolic connections between caloric restriction and aging.

The map, as well as the techniques used to create it, could lead to a better understanding of how cell metabolism is re-wired in some cancers, age-related diseases and metabolic conditions such as diabetes.

“It’s really a dynamic atlas for regulatory points in mitochondrial function -- there are many interesting avenues that other scientists can follow up on,” says John Denu, professor of biomolecular chemistry and leader of the Epigenetics theme at the Wisconsin Institute for Discovery (WID). “It could take years for researchers to understand what it all means, but at least now we have a list of the most important players.”

In previous experiments, it’s been shown that consuming less food increases the life span and health span in a range of organisms, from yeast and flies to mice and non-human primates. But pinpointing where and how caloric restriction affects cells at a molecular level remains the challenge.

So far, mitochondrial proteins, the molecules that command specific actions in the cell’s powerhouse organelle, are at center stage of metabolic reprogramming.

Denu and colleagues conducted earlier research on the mitochondrial protein Sirt3, where they suggested a link between Sirt3 and the benefits of caloric restriction in situations such as the prevention of age-related hearing loss.

The new research, published in the Nov. 29 issue of the journal Molecular Cell, more broadly identifies pathways in mitochondria that could be behind the re-wiring of metabolism. Their work uncovered regulatory processes that maintain mitochondrial health, control cells’ ability to metabolize fat and amino acids, as well as stimulate anti-oxidant responses. This re-wiring involves the addition or removal of two-carbon (acetylation) chemical groups within regulatory molecules called proteins.

In the study, scientists looked at liver tissue from groups of mice -- both with and without the ability to produce Sirt3. Some received a calorically restricted diet and some did not. After one year, they compared protein and acetylation changes among the groups of mice. They found Sirt3 was essential for many of the metabolic adaptations that occur during calorie restriction. These results suggest that therapies, including diet or drugs that enhance Sirt3 function, might provide novel interventions to fend off age-related illnesses.

Joshua Coon, professor of chemistry and biomolecular chemistry at UW-Madison and co-author of the paper, crafted a new technique to find these molecular sites. While the genome plays a key role in an organism’s health, he points out that studying proteins -- the molecular machines that carry out an organism’s original genetic instructions -- can be more accurate in revealing how a gene functions.

“We’ve taken dozens of primary tissues and profiled their protein content with depth to learn how they vary,” Coon says. “With that information, we have direct knowledge at the molecular level of how an organism is dealing with adaption to diet, or potentially, a given disease state.”

He says using mass spectrometry to look for acetylated proteins from tissue samples is a more fruitful approach to identify relevant physiological changes. The study, he says, is one of the first of many that will create descriptive maps for other disease models.

To expand access to these enabling technologies across campus, Coon plans to launch the Wisconsin Center for Collaborative Proteomics in 2013. The center has received significant support from the UW and is pending further support via federal funding.

-- Marianne English, 608-316-4687, menglish@discovery.wisc.edu

John Denu, 608-316-4341, jmdenu@wisc.edu; Joshua Coon, 608-263-1718, jcoon@chem.wisc.edu

Marianne English | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>