Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Crack Molecular Code Regulating Neuronal Excitability

23.03.2011
A key question in protein biochemistry is how proteins recognize "correct" interaction partners in a sea of cellular factors.

Nowhere is that more critical to know than in the brain, where interactions governing channel protein activity can alter an organism's behavior. A team of biologists at the Salk Institute for Biological Studies has recently deciphered a molecular code that regulates availability of a brain channel that modulates neuronal excitability, a discovery that might aid efforts to treat drug addiction and mental disorders.

In the this week's Online Early Edition of the Proceedings of the National Academy of Sciences, Paul Slesinger, Ph.D., Associate Professor in the Clayton Foundation Laboratories for Peptide Biology, and colleagues detail how a regulatory factor called SNX27 distinguishes a brain channel protein called GIRK (short for G-protein-coupled inwardly rectifying potassium channels) from structurally similar proteins and then targets it for destruction.

That work extends the group's 2007 study showing that when SNX27 proteins capture GIRK channels, they are reducing the number of channels at their rightful destination, the cell membrane. "We were curious about what determined the selectivity of this interaction," says Slesinger. "We knew that SNX27 interacted with a structural motif found on GIRK channels but many channel proteins display a similar motif. We wanted to know what allowed SNX27 to specifically choose GIRK channels."

Knowing this is critical because of the connection of GIRK channels to substance abuse. Slesinger and others have shown that alcohol or club drugs linked to sexual assault (GHB) affects GIRK channel function in the brain. Loss-of-inhibition behaviors associated with abuse of these substances result from the fact that GIRK channels allow potassium ions to leak out of a stimulated neuron, thereby dampening a cell's excitability.

In the new study Slesinger's team confirmed that SNX27 resides in neurons, just below the membrane where active GIRK channels sit. Additional experiments using brain cells manipulated to express abnormally high SNX27 levels showed that cells were less responsive to drugs that activate channels, suggesting that SNX27 waylays membrane-bound GIRKs and blocks their function.

The fact that SNX27 displays a common protein-interaction signature called PDZ domain suggested how SNX27 grabs its partner: GIRKs contain a short, 4-residue sequence that binds to PDZ domains, a recognition motif Slesinger likens to a zip code. But channels similar to GIRKs, called IRKs, displayed an almost identical sequence but were impervious to destruction by SNX27. "We were puzzled by this similarity and swapped the 4-residue code in IRK with the corresponding sequence from GIRK," says Slesinger. Surprisingly, this IRK/GIRK hybrid did not bind SNX27, indicating that the IRK lacked other elements necessary for SNX27 recognition.

To define these new elements, Slesinger consulted with a long-standing collaborator, Senyon Choe, Ph.D., professor in Salk's Structural Biology Laboratory. Choe is an expert on a technique known as X-ray crystallography, used to determine the three-dimensional structure of proteins. The team scrutinized crystallized forms of SNX27 wrapped around the GIRK binding motif to try to visualize where the proteins made contact.

"We observed a binding cleft in the SNX27 PDZ domain and a region that formed another pocket with a lot of positive charges," says Slesinger. "The GIRK fragment lying there had a negative charge upstream of the 4-residue "zip code". That suggested that this second site allowed a previously unknown electrostatic interaction between these two proteins." Therefore, SNX27 may recognize a 6-residue motif, like the "zip plus 4' code.

More swap experiments targeting the GIRK negatively charged region confirmed the hypothesis. Synthetic forms of GIRK lacking the region no longer bound to SNX27. By contrast, an artificial version of IRK engineered to contain the GIRK negative charges homed to SNX27.

Most significant were experiments conducted by Bartosz Balana, Ph.D., a postdoctoral fellow in the Slesinger lab and the study's first author. Balana measured currents from cells engineered to carry GIRK channels lacking the charged region and found that GIRK currents were no longer dampened by SNX27, while cells expressing IRK channels displaying the false GIRK "address" now responded to SNX27. "This functional assay pin-pointed residues that dictate SNX27 binding beyond the normal PDZ recognition sequence," says Bartosz. "This supports a two-site binding model and emphasizes that second site can overrule binding at the classical site."

An interesting corollary to GIRKs' involvement in drug-related behavior is that SNX27 levels reportedly increase in rodent models of addiction to stimulants like cocaine and methamphetamine. Selectively blocking this newly identified interaction between GIRK and SNX27 might thwart addiction. "Now we are able to better understand the role of these channels in responses to drugs of abuse. It is our hope that that this work will lead to new strategies to treat diseases such as alcoholism or even, diseases of excitability, such as epilepsy." says Slesinger.

Also contributing to the study were Kalyn Stern and Laia Bahima of the Slesinger Lab and Innokentiy Maslennikov, and Witek Kwiatkowski of Choe's Structural Biology Laboratory.

The study was funded by grants from the NIH and the National Alliance for Research on Schizophrenia and Depression.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>