Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019

Scientists have long dreamed of creating synthetic structures out of the same raw material that nature uses in living systems -- proteins -- believing such an advance would allow for the development of transformative nanomachines, for example, molecular cages that precisely deliver chemotherapy drugs to tumors or photosynthetic systems for harvesting energy from light.

Now a team of biologists from The University of Texas at Austin and the University of Michigan have invented a way to build synthetic structures from proteins, and just as in nature, the method is simple and could be used for a variety of purposes.


As a proof of concept, a team of researchers at the University of Texas at Austin built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins.

Credit: University of Texas at Austin

"We think we can use these structures kind of like Legos to build bigger things," said David Taylor, assistant professor of molecular biosciences at UT Austin and co-corresponding author on a new paper published today in the journal Nature Chemistry. "We also know some of the rules for modifying the basic recipe to make different types of building blocks."

As a proof of concept, the team built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins.

Previous researchers have managed to create synthetic structures from proteins but only after painstakingly affixing something onto proteins or creating new proteins from scratch, making earlier methods complicated, time-intensive and limiting.

By contrast, the new method, dubbed "SUpercharged PRotein Assembly (SuPrA)," mimics the way that proteins in living organisms work as they make the molecular machines that carry out the different functions of life: The structures in the new method are self-assembling and flexible.

"Our approach takes a protein that doesn't normally assemble, and gives it many potential sites where it might be able to, allowing it to 'choose' which fits the rest of its geometry and chemistry best," said Anna Simon, a postdoctoral researcher in UT Austin's Department of Molecular Biosciences and co-first author of the paper.

"This is important because it gives us a way to semi-direct proteins to organize into larger structures without having to understand beforehand exactly how they will fit together."

The original concept for this new method was developed by Andy Ellington, associate director of UT Austin's Center for Systems and Synthetic Biology, also a professor of molecular biosciences and the co-corresponding author on the study.

To demonstrate their concept, the researchers started with green fluorescent protein, a standard protein used as a glowing tag in all sorts of biological experiments. They created two slightly different versions, using a never-before-attempted method: adding electrical charges to entice the protein to form discrete, symmetrical structures.

One version had positive charges added at certain spots, and it was mixed in a solution with a second version that had negative charges at certain spots. The team found each version self-assembled into myriad tiny structures, or macromolecular complexes, each with the same number and arrangement of proteins.

Because this method allows structures to be built from naturally occurring proteins, the researchers say it offers science a new tool that's scalable, affordable and sustainable.

"It's like how people use 3D printers to make things out of materials they wouldn't have used in the past," Taylor said. "This new method gives us another option for materials. These materials are easily obtainable, inexpensive and not harmful to the environment."

###

Other major contributors to the effort were Yi Zhou, a postdoctoral researcher in UT Austin's Department of Molecular Biosciences and co-first author of the paper; and Sharon Glotzer, professor of chemical engineering at the University of Michigan.

David Taylor is a CPRIT Scholar supported by the Cancer Prevention and Research Institute of Texas. Anna Simon is supported by the Arnold O. Beckman Postdoctoral Fellowship. This work was also supported by the U.S. Army Research Laboratory, the U.S. Army Research Office, the National Science Foundation and the Welch Foundation.

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41557-018-0196-3

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>