Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019

Scientists have long dreamed of creating synthetic structures out of the same raw material that nature uses in living systems -- proteins -- believing such an advance would allow for the development of transformative nanomachines, for example, molecular cages that precisely deliver chemotherapy drugs to tumors or photosynthetic systems for harvesting energy from light.

Now a team of biologists from The University of Texas at Austin and the University of Michigan have invented a way to build synthetic structures from proteins, and just as in nature, the method is simple and could be used for a variety of purposes.


As a proof of concept, a team of researchers at the University of Texas at Austin built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins.

Credit: University of Texas at Austin

"We think we can use these structures kind of like Legos to build bigger things," said David Taylor, assistant professor of molecular biosciences at UT Austin and co-corresponding author on a new paper published today in the journal Nature Chemistry. "We also know some of the rules for modifying the basic recipe to make different types of building blocks."

As a proof of concept, the team built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins.

Previous researchers have managed to create synthetic structures from proteins but only after painstakingly affixing something onto proteins or creating new proteins from scratch, making earlier methods complicated, time-intensive and limiting.

By contrast, the new method, dubbed "SUpercharged PRotein Assembly (SuPrA)," mimics the way that proteins in living organisms work as they make the molecular machines that carry out the different functions of life: The structures in the new method are self-assembling and flexible.

"Our approach takes a protein that doesn't normally assemble, and gives it many potential sites where it might be able to, allowing it to 'choose' which fits the rest of its geometry and chemistry best," said Anna Simon, a postdoctoral researcher in UT Austin's Department of Molecular Biosciences and co-first author of the paper.

"This is important because it gives us a way to semi-direct proteins to organize into larger structures without having to understand beforehand exactly how they will fit together."

The original concept for this new method was developed by Andy Ellington, associate director of UT Austin's Center for Systems and Synthetic Biology, also a professor of molecular biosciences and the co-corresponding author on the study.

To demonstrate their concept, the researchers started with green fluorescent protein, a standard protein used as a glowing tag in all sorts of biological experiments. They created two slightly different versions, using a never-before-attempted method: adding electrical charges to entice the protein to form discrete, symmetrical structures.

One version had positive charges added at certain spots, and it was mixed in a solution with a second version that had negative charges at certain spots. The team found each version self-assembled into myriad tiny structures, or macromolecular complexes, each with the same number and arrangement of proteins.

Because this method allows structures to be built from naturally occurring proteins, the researchers say it offers science a new tool that's scalable, affordable and sustainable.

"It's like how people use 3D printers to make things out of materials they wouldn't have used in the past," Taylor said. "This new method gives us another option for materials. These materials are easily obtainable, inexpensive and not harmful to the environment."

###

Other major contributors to the effort were Yi Zhou, a postdoctoral researcher in UT Austin's Department of Molecular Biosciences and co-first author of the paper; and Sharon Glotzer, professor of chemical engineering at the University of Michigan.

David Taylor is a CPRIT Scholar supported by the Cancer Prevention and Research Institute of Texas. Anna Simon is supported by the Arnold O. Beckman Postdoctoral Fellowship. This work was also supported by the U.S. Army Research Laboratory, the U.S. Army Research Office, the National Science Foundation and the Welch Foundation.

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41557-018-0196-3

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>