Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019

Scientists have long dreamed of creating synthetic structures out of the same raw material that nature uses in living systems -- proteins -- believing such an advance would allow for the development of transformative nanomachines, for example, molecular cages that precisely deliver chemotherapy drugs to tumors or photosynthetic systems for harvesting energy from light.

Now a team of biologists from The University of Texas at Austin and the University of Michigan have invented a way to build synthetic structures from proteins, and just as in nature, the method is simple and could be used for a variety of purposes.


As a proof of concept, a team of researchers at the University of Texas at Austin built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins.

Credit: University of Texas at Austin

"We think we can use these structures kind of like Legos to build bigger things," said David Taylor, assistant professor of molecular biosciences at UT Austin and co-corresponding author on a new paper published today in the journal Nature Chemistry. "We also know some of the rules for modifying the basic recipe to make different types of building blocks."

As a proof of concept, the team built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins.

Previous researchers have managed to create synthetic structures from proteins but only after painstakingly affixing something onto proteins or creating new proteins from scratch, making earlier methods complicated, time-intensive and limiting.

By contrast, the new method, dubbed "SUpercharged PRotein Assembly (SuPrA)," mimics the way that proteins in living organisms work as they make the molecular machines that carry out the different functions of life: The structures in the new method are self-assembling and flexible.

"Our approach takes a protein that doesn't normally assemble, and gives it many potential sites where it might be able to, allowing it to 'choose' which fits the rest of its geometry and chemistry best," said Anna Simon, a postdoctoral researcher in UT Austin's Department of Molecular Biosciences and co-first author of the paper.

"This is important because it gives us a way to semi-direct proteins to organize into larger structures without having to understand beforehand exactly how they will fit together."

The original concept for this new method was developed by Andy Ellington, associate director of UT Austin's Center for Systems and Synthetic Biology, also a professor of molecular biosciences and the co-corresponding author on the study.

To demonstrate their concept, the researchers started with green fluorescent protein, a standard protein used as a glowing tag in all sorts of biological experiments. They created two slightly different versions, using a never-before-attempted method: adding electrical charges to entice the protein to form discrete, symmetrical structures.

One version had positive charges added at certain spots, and it was mixed in a solution with a second version that had negative charges at certain spots. The team found each version self-assembled into myriad tiny structures, or macromolecular complexes, each with the same number and arrangement of proteins.

Because this method allows structures to be built from naturally occurring proteins, the researchers say it offers science a new tool that's scalable, affordable and sustainable.

"It's like how people use 3D printers to make things out of materials they wouldn't have used in the past," Taylor said. "This new method gives us another option for materials. These materials are easily obtainable, inexpensive and not harmful to the environment."

###

Other major contributors to the effort were Yi Zhou, a postdoctoral researcher in UT Austin's Department of Molecular Biosciences and co-first author of the paper; and Sharon Glotzer, professor of chemical engineering at the University of Michigan.

David Taylor is a CPRIT Scholar supported by the Cancer Prevention and Research Institute of Texas. Anna Simon is supported by the Arnold O. Beckman Postdoctoral Fellowship. This work was also supported by the U.S. Army Research Laboratory, the U.S. Army Research Office, the National Science Foundation and the Welch Foundation.

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41557-018-0196-3

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>