Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists capture 'redox moments' in living cells

25.11.2013
Better understanding of hardy bacteria enhances tool for biofuel creation

Scientists have charted a significant signaling network in a tiny organism that's big in the world of biofuels research.


Green fluorescence shows redox reactions in living Synechococcus cells.

Credit: Image courtesy of Aaron Wright/PNNL

The findings about how a remarkably fast-growing organism conducts its metabolic business bolster scientists' ability to create biofuels using the hardy microbe Synechococcus, which turns sunlight into useful energy.

The team at the Department of Energy's Pacific Northwest National Laboratory glimpsed key chemical events, known as redox reactions, inside living cells of the organism. The publication in ACS Chemical Biology marks the first time that redox activity, a very fast regulatory network involved in all major aspects of a cell's operation, has been observed in specific proteins within living cells.

The findings hone scientists' control over a common tool in the biofuels toolbox. At a more basic level, the work gives researchers the newfound ability to witness a basic biological process that occurs every moment in everything from bacteria to people.

"Redox activity tells us where the action is going on within a cell," said chemist Aaron Wright, the leader of the PNNL team whose project was funded by DOE's Office of Science. "We've been able to get a look at the redox system while it's still operating in a living cell, without destroying the cell first. This allows us to tell who the players are when the cells are engaged in the activity of our choice, like making components for biofuels."

Redox activity is one of the most powerful tools an organism has to sense and adapt to a changing environment; it's particularly active in plants that must respond constantly to changing conditions, such as light and dark.

The PNNL study was aimed at ferreting out proteins that are potential redox players in the cyanobacterium Synechococcus. Cyanobacteria absorb light energy from the sun and use it to convert carbon dioxide into food and other molecules, while also giving off oxygen. Redox reactions play a role in directing where the harvested energy goes.

Scientists believe the organism and its plant-like cousins, including algae, were responsible for producing the first oxygen on Earth, more than 2.5 billion years ago. It's a sure bet that you have inhaled oxygen molecules produced by Synechococcus, which today contributes a significant proportion of the oxygen available on Earth.

The organism is attractive to scientists for a number of reasons. It's adept at converting carbon dioxide into other molecules, such as fatty acids, that are of interest to energy researchers. Synechococcus is easy for scientists to change and manipulate as they explore new ideas. And it grows quickly, doubling in approximately two hours. A patch just two feet wide by seven feet long – roughly the area of a typical dining room table – could blossom into an area the size of a football field in just one day.

Biofuels makers and other scientists are trying to exploit this ability to churn out quantities of materials that might serve as biofuel. Synechococcus is also remarkably hardy, capable of tolerating the stress caused by intense sunlight, which kills many other cyanobacteria. Redox reactions that take place throughout the organism are at the core of this ability, and understanding them gives scientists a treasured global view of how the cell lives and responds to change.

Some researchers are working to get the bacteria itself to create biofuel, growing an organism with more fatty acids that could be converted to diesel fuel. Others, like Wright, are working to understand the organism more completely, to direct the organism to create fuels using light and carbon dioxide.

Wright's team found the signals by keeping the bacteria hungry, then suddenly flooding it with food – a massive, immediate change in environment. Within 30 seconds, the team detected redox activity, which changes the way proteins operate by adding or subtracting electrons.

His team uncovered an extensive network of redox activity, identifying 176 proteins that are sensitive to signaling in this manner. Before this study, just 75 of those proteins were known to be part of a redox signaling network. The scientists found that the system is involved in all the major processes of a cell – which genes are turned on and off, for example, as well as how the cell maintains its molecular machinery and converts energy into fuel.

Central to the work are the chemical probes Wright developed that are able to cross the cell membrane and get into the cytoplasm of the cell. The probes flag redox events by binding to certain forms of the amino acid cysteine, which is a known player in many of these interactions. Then the probes and the interactions they flag are subjected to scrutiny at EMSL, the DOE's Environmental Molecular Sciences Laboratory on the PNNL campus, where instruments detect redox activity through various means, such as through fluorescent imaging and mass spectrometry. The analysis tells scientists about when and where within the cell redox activity occurred.

"Knowing the proteins that are sensitive to redox signaling lets us know where to look as we test out new methods for working with this organism," said Wright. "We can tinker with a specific protein, for instance, and then watch the effects immediately.

"This is the type of information we really must have if we want organisms like this to produce substances that make a difference, like biofuels, chemicals or potential medicines," he added.

Reference: Natalie C. Sadler, Matthew R. Melnicki, Margrethe H. Serres, Eric D. Merkley, William B. Chrisler, Eric A. Hill, Margaret F. Romine, Sangtae Kim, Erika M. Zink, Suchitra Datta, Richard D. Smith, Alexander S. Beliaev, Allan Konopka, and Aaron T. Wright, Live Cell Chemical Profiling of Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium, ACS Chemical Biology, October 29, 2013, DOI: 10.1021/cb400769v.

The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Tom Rickey | EurekAlert!
Further information:
http://www.pnnl.gov

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>