Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist holds promise for novel oral anti-diabetic drugs

10.06.2009
Promise is held out for the development of novel oral drugs to control blood glucose levels in diabetes patients as the result of research by a Hebrew University of Jerusalem scientist.

For his groundbreaking work, Prof. Shlomo Sasson of the Hebrew University School of Pharmacy has been named one of the winners this year of the Hebrew University’s Kaye Innovation Awards.

Type 2 diabetes is a worldwide epidemic, predicted to affect over 380 million people within the next 20 years. This disease is characterized by high blood glucose levels that lead to severe complications in various organs and tissues. The disease usually results from insufficient secretion and function of the pancreatic hormone insulin that regulates glucose metabolism in peripheral tissues, such as skeletal muscles, fatty tissues and the liver.

Pharmacological anti-diabetic therapy aims at a strict regulation of blood glucose levels to prevent such complications. However, because current oral anti-diabetic drugs often fail, many patients need daily injections of insulin to control their glucose metabolism and reduce blood glucose levels.

The global diabetes therapy market is estimated at around US$26.3 billion in 2009. By 2013 the market is expected to grow to around US$34.5 billion.

Recent work on the molecular mechanisms that regulate glucose transport in skeletal muscles has identified new potential targets for anti-diabetic drugs.

In his research, Sasson, with his colleagues and students, made a unique discovery that high levels of the carbohydrate D-xylose increased the rate of glucose entry into skeletal muscle cells in a non-insulin-dependent manner. They then used it as a prototype molecule for the planning and synthesis of chemical derivatives that may act as potential drugs to lower blood glucose in type 2 diabetic patients.

Some of these derivatives increased significantly the rate of glucose transport in skeletal muscles at very low concentrations. This effect was not achieved by mimicking the classical pathway of insulin action, but by activating the enzyme AMP-activated protein kinase (AMPK). When activated, this enzyme increases the rate of glucose transport in skeletal muscles in the absence of insulin. Therefore, compounds that activate this enzyme can be effective in insulin resistant type 2 diabetic patients or in those that fail to respond to conventional drug therapy. This makes AMPK an extremely attractive target in the development of novel anti-diabetic drugs.

One of the lead compounds developed by Sasson and colleagues effectively reduced blood glucose levels in various animal models of diabetes. This discovery indicates the great potential of these novel derivatives to serve as the basis for development of new drugs to normalize blood glucose levels in diabetic patients.

The Kaye Innovation Awards have been given annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which will benefit the university and society. This year’s Kaye Awards were presented on June 9 during the Hebrew University Board of Governors meeting in Jerusalem.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>