Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

„Science“-Study: Proteins surf to mitochondria – Novel transport pathway discovered

17.09.2018

Proteins are essential constituents of cells and their compartments. Prof. Johannes Herrmann, a researcher at the Technische Universität Kaiserslautern, and his team discovered a novel mechanism by which newly synthesized proteins reach their respective target compartment in the cell. Proteins destined to mitochondria, the cell’s powerhouse, are not directly transported to mitochondria but are directed to the surface of the endoplasmic reticulum, where they “surf” along its surface. As shown in the renowned journal “Science”, this so far unknown mechanism keeps newly synthesized protein transport-competent and might prevent their aggregation.

Protein aggregation can be a critical problem leading to human pathologies such as Alzheimer’s or Parkinson’s disease.


The microscope image shows mitochondria, the cell's power plants.

Credits: AG Herrmann


Prof. Johannes Herrmann and his PhD student Katja Hansen are exploring the mitochondrial biology.

Credits: AG Herrmann

Mitochondria, the compartments that produce most of the cellular energy, contain surface receptors, which facilitate protein uptake. “These receptors specifically recognize mitochondrial proteins and direct them through pores into the interior of mitochondria”, explains Prof. Johannes Herrmann, a specialist for mitochondrial biology.

“But, so far, we had no idea what these proteins encounter before they reach the mitochondrial surface”. “It was just assumed that newly synthesized proteins are directly targeted to their destination compartment”.

In a close collaboration with Professor Maya Schuldiner from the Weizmann Institute in Rehovot, Israel, Herrmann’s team observed that mitochondrial proteins are initially targeted to the surface of the endoplasmic reticulum (ER). The ER is a cellular compartment that serves as a central sorting station to deliver proteins to various cellular structures.

The new import pathway is termed ER-SURF, “since proteins basically surf along the ER surface” explains Katja Hansen, a PhD student in Prof. Herrmann’s lab and first author of the Science paper. Hansen established a genetic screen to identify novel components relevant for intracellular protein transport. She explains “we were able to identify specific ER-associated proteins as being critical for the transport of proteins to the mitochondrial surface”

The ER serves thereby as a buffer system. “The newly synthesized proteins, often prone to misfold and aggregate, are bound and stored on the ER surface until they can be passed on to mitochondria” explains Herrmann. “Thereby, ER-surf maintains proteins in a transport-competent conformation and prevents their aggregation. Such protein aggregates can be detrimental for cells and are thought to underlie the development of many diseases."

Herrmann‘s team will now try to unravel the relevance of their ER-surf mechanism in the context of human diseases. “In particular, neurodegenerative disorders such as Alzheimer’s or Parkinson’s disease are caused by accumulating protein aggregates” says Herrmann. If the mechanisms that lead to the formation of these aggregates are better understood, we might be able to identify strategies to treat and cure these diseases.

Further studies are needed to unravel whether the ER-surf pathway is also relevant for the targeting of proteins to other cellular compartments.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Johannes Herrmann
Cell Biology, University of Kaiserslautern, Germany
E-Mail: hannes.herrmann@biologie.uni-kl.de
Tel.: 0631 205-2406

Originalpublikation:

„ER surface retrieval pathway safe-guards the import of mitochondrial membrane proteins in yeast.“ Hansen, K.G., Aviram, N., Laborenz, J., Bibi, C., Meyer, M., Spang, A., Schuldiner, M., Herrmann, J.M.
http://science.sciencemag.org/content/361/6407/1118

DOI: 10.1126/science.aar8174

Melanie Löw | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht Neuronal circuits in the brain 'sense' our inner state
15.07.2020 | Technische Universität München

nachricht Novel test method detects coronavirus in highly diluted gargle samples
15.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Nanoelectronics learn the same way as the human brain

15.07.2020 | Information Technology

Mobile EEG for the detection of epileptic seizures in daily life

15.07.2020 | Medical Engineering

When Concrete learns to pre-stress itself

15.07.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>