Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scent of a Spider

15.02.2010
Sex pheromone of the wasp spider identified

Wasp spiders normally live alone. In their mating season, however, they look for a partner. To help them along, the females exude a chemical lure, a pheromone that has an irresistible scent to the males.

A team led by Gabriel Uhl (University of Bonn/Greifswald) and Stefan Schulz (TU Brunswick) has now identified this pheromone and synthesized it in the laboratory. As the scientists report in the journal Angewandte Chemie, they were able to use this synthetic substance to attract spiders in the field with a pheromone for the first time.

Female wasp spiders (Argiope bruennichi) have striking markings reminiscent of a wasp. The spiders prefer to live in the fields of the Mediterranean region, but have begun to spread into central Europe as well. Their prey consists primarily of grasshoppers. Adult females build nets in the grass and lure the much smaller males, who are searching for partners in the meadow. In order to find a female, the males follow the alluring scent of pheromones.

In order to track down the pheromones of the wasp spider, the scientists placed female spiders in glass chambers and used carbon filters to capture the volatile compounds out of the atmosphere. After extraction from the filters and a gas-chromatographic separation, the substances were analyzed by mass spectrometry. “It was found that grown, unpaired females excrete a special substance that juvenile and mated spiders do not,” explains Uhl. “This compound is also found in the nets of females who are ready to mate.” Very few pheromones have thus far been found for spiders. “Among the orb weaver spiders, our project is the first to identify a pheromone,” reports Schulz.

The analysis revealed that the wasp spider pheromone is methylcitric acid trimethyl ester, a derivative of citric acid. The molecules of this compound can occur in four different forms, which differ only by the spatial arrangement of the individual atoms relative to each other. The team synthesized these four stereoisomers in the laboratory and compared them to the natural extract. “The volatile substances contained two of the isomers in a ratio that can range from 6:1 to 25:1,” says Schulz. Using a synthetic mixture, the scientists were able to lure male wasp spiders into traps in a sunny meadow in high summer. Whereas the successful attraction was dependent on the concentration of the pheromone in the trap, the ratio of the isomers played no role. Says Schulz: “We have thus successfully lured spiders in pheromone traps for the first time.”

Author: Stefan Schulz, Technische Universität Braunschweig (Germany), http://aks7.org-chem.nat.tu-bs.de/HTML/Mitarbeiter/aksss.html

Title: The Sex Pheromone of the Wasp Spider Argiope bruennichi

Angewandte Chemie International Edition, Permalink: http://dx.doi.org/10.1002/anie.200906311

Stefan Schulz | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://aks7.org-chem.nat.tu-bs.de/HTML/Mitarbeiter/aksss.html

Further reports about: Angewandte Chemie Argiope Argiope bruennichi SPIDER WASP citric acid wasp spider

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>