Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scars: gone with the foam

15.08.2019

Poorly healing wounds and severe scarring are more than just a cosmetic problem; they can significantly impair a person's mobility and health. Empa researchers have now developed a foam that is supposed to prevent excessive scarring and help wounds to heal quickly. An essential ingredient: the yellow ginger tumeric.

A scar on the elbow that is strained with every movement, or a foot, on which a wound simply does not want to close – poorly healing injuries are a common cause of health restrictions. And although millions of people are affected in their everyday lives, the complex process of wound healing is not yet fully understood, let alone controllable.


The foam can be placed in skin wounds and supports the natural healing process (right). In the scaffold of the polymer foam cells like these fibroblasts find a good hold to build up new skin tissue (left).

Image: Empa

Empa researchers have, therefore, developed a foam that is supposed to be placed in skin wounds to support and optimize the natural healing process. With the "Scaravoid" project, Markus Rottmar and his team in Empa's Biointerfaces lab have taken a step in a new direction.

"Traditional treatments target individual factors of wound healing, such as oxygen supply or moisture regulation, and only produce an inadequate tissue response," explains Rottmar. Within "Scaravoid", which is sponsored by the Gebert Rüf Foundation, the healing process is to be understood and supported more comprehensively.

Perfectly orchestrated

It is clear so far that a perfectly orchestrated interaction of numerous individual factors in the body is necessary in order to close a skin injury and transform it into healthy tissue. Cells must be attracted so that a well-dosed inflammation cleanses the wound. In order for the cleaned defect to close, new tissue grows, which is then transformed into functional skin. As astonishing as the body's self-healing powers are, a malfunction can disturb the balance and lead to excessive scarring or inadequate wound closure. In older people or diabetics, for instance, the risk that the complex cascade may be impaired is increased.

With "Scaravoid", the Empa team is now intervening at several stages in the process thanks to a biological polymer scaffold that is already approved for certain medical uses. In a high-pressure reactor, the polymer is expanded using supercritical carbon dioxide (CO2), whereby the pore size can be finely tuned by varying pressure and temperature. Once placed in a wound, the polymer scaffold is to begin its work: With its open-pored architecture, it offers immigrant cells a suitable structure to settle in. Since the foam is biodegradable, the cells disintegrate the polymer structure and produce a new scaffold according to their needs to form a new, functional tissue.

Natural balance

In order to prevent undesired scarring, the polymer scaffold is equipped with a bioactive substance that is supposed to inhibit scarring. The researchers use a substance that is known way better from the kitchen than from the hospital: curcumin. The powder of the turmeric root, also known as yellow ginger, is an E100 additive that dyes foods such as mustard or margarine and contributes to the taste of curry powder. Curcumin, on the other hand, is an interesting pharmacological component because of its anti-inflammatory characteristics. The Empa researchers added curcumin to cell cultures and found that the production of biomarkers typically found in scars is significantly reduced.

In the foam, curcumin is bound inside the scaffold and is gradually released. It controls the behavior and function of the cells that migrate into the scaffold and thus supports the natural balance of wound healing. What is currently being analyzed in lab tests in the form of small polymer discs will be used in clinical trials in the form of larger polymer membranes. The membranes can be cut to size by the physician and placed into the wound. The membranes are intended to optimize wound healing, particularly in the event of serious injuries, such as those following traffic accidents or severe burns.

Wissenschaftliche Ansprechpartner:

Dr. Markus Rottmar
Biointerfaces
Phone +41 58 765 71 18
markus.rottmar@empa.ch

Weitere Informationen:

https://www.empa.ch/web/s604/wundschaum1

Andrea Six | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

Jena Laser Technology Conference brings together top international researchers

12.08.2019 | Event News

 
Latest News

Climate change 'disrupts' local plant diversity, study reveals

16.08.2019 | Life Sciences

Finnish discovery brings new insight on the functioning of the eye and retinal diseases

16.08.2019 | Life Sciences

A Rescue Plan for the Ocean

16.08.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>