Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sanitary care by social ants shapes disease outcome

20.01.2020

Social interactions of ants affect pathogen competition – Study published in Ecology Letters

Sanitary care in ants to fight disease is known to improve the wellbeing of the colony, yet it has been unclear how social disease defense interferes with pathogen competition inside the individual host body.


Artgentine ant Worker

IST Austria Roland Ferrigato & Sina Metzler

In their recent study published in Ecology Letters, Sylvia Cremer and her research group at the Institute of Science and Technology Austria (IST Austria) revealed that collective care-giving has the power to bias the outcome of coinfections in fungus-exposed colony members.

Who wins in a competition is largely dependent on the opponent faced, yet the role of the environment in which the battle takes place should not be underestimated either.

In sports, some skiers profit from icy over snowy grounds and some tennis players are weaker on sand than on grass. Similarly, within our bodies, the immune system sets the environment for the competition between multiple pathogens that infect us at the same time.

It is long known that an immune response can bias the competitive outcome of competing pathogens as it may affect one pathogen more than the other. Professor Sylvia Cremer and her team at the Institute of Science and Technology (IST Austria) could now provide first evidence that it is not only the immune system of the host individual which shapes the competitive outcome of coinfecting pathogens within the insect body, but that the social context can have a similar effect.

Survival of the fastest

Solitary species have to fight disease alone. In contrast, in groups of social species—including bees, ants or termites—, nestmates often assist the infected individual by providing sanitary care, thereby creating an environment of “social immunity”.

The Cremer group discovered that—besides the immune system of the individual host itself—the sanitary care provided by ants to their fungus-exposed colony members modulates the pathogen competition inside the host’s body, changing the success of pathogen outgrowth after infection.

Testing a number of different pathogen combinations, the Cremer’s team found that one fungal pathogen species that was very successful in winning the competition in individually-reared ants was much less successful when the ants were reared together with healthy colony members.

The researchers discovered that this bias introduced by care-providing nestmates was not caused by selective grooming of one pathogen species over the other. Rather, the fungal spores showed different susceptibility to the ants’ grooming: spores that quickly enter their host’s body turned out less susceptible to grooming than spores that need more time penetrating the body surface.

Due to this slower so called germination speed, the respective pathogen was exposed to the ants’ grooming for longer than the otherwise weaker competitor.

Professor Sylvia Cremer summarizes: “If one pathogen species takes longer to germinate, this leaves the ants more time and increases their chance to groom it off. Hence a fast germination reduces the time window for the ants to perform successful sanitary care and can shift the balance towards winning the competition against a slower-germinating pathogen species.” 

Social care-giving beats self-cleaning
Pathogens of the genus Metarhizium infect insects by attaching to the body surface of their hosts as spores and start germinating. Germinated spores grow a plug-like structure that produces both pressure and lytic enzymes to break the host body surface.

They then grow into the host, replicate, kill the host by toxins and grow out millions of novel spores that cause the next round of infections. Grooming helps ants to effectively prevent these infections.

First author and IST Austria postdoc Barbara Milutinović explains: “The ants use their mouthparts to pluck off the infectious spores from the body surface of their nestmates. Such social allogrooming is much more efficient than selfgrooming, as some body parts are impossible to be reached by oneself—as we all know from our own experience when we try to scratch an itchy spot on our own back.”

As the Cremer group found, in the presence of grooming nestmates, this social allogrooming can induce a shift in the pathogen community inside the host—and thus alter the disease outcome.

Wissenschaftliche Ansprechpartner:

Sylvia Cremer
sylvia.cremer@ist.ac.at

Originalpublikation:

Barbara Milutinović, Miriam Stock, Anna V. Grasse, Elisabeth Naderlinger, Christian Hilbe & Sylvia Cremer. 2020. Social immunity modulates competition between coinfecting pathogens. Ecology Letters. DOI: 10.1111/ele.13458

Bernhard Wenzl | idw - Informationsdienst Wissenschaft
Further information:
https://ist.ac.at/de/

Further reports about: Ecology Letters Sanitary ants colony germination immune system infections pathogens spores

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>