Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same genes, same environment, different personality: Is individuality unavoidable?

17.05.2017

Genetically identical Amazon mollies raised individually and under identical environmental conditions, nevertheless develop different personality types. Additionally, increasing the opportunity for social interactions early in life appears to have no influence of the magnitude of personality variation. These results of a recent study by the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) shed a new light on the question of which factors are responsible for the individuality of vertebrate animals.

Both the genetics and the environment have an effect on the individual behavior of animals – or at least that is the common doctrine. But what happens when individuals whose genes are identical are raised in environments that are identical – do they then develop identical behavioral patterns?


The Amazon molly reproduces clonally so that each offspring is an exact genetic copy of her mother.

Photo: Bierbach / IGB

A team headed by IGB researchers Dr. David Bierbach and Dr. Kate Laskowski investigated this question in a study, which was published on 17th of May 2017 in the journal Nature Communications. The IGB scientists were able to show for the first time that genetically identical animals develop different types of personality even if they are raised under almost identical conditions.

Investigation of activity and exploratory behavior

The IGB team used the Amazon molly, a livebearing Poecilid species. These animals are natural clones, meaning all the offspring of one mother have exactly the same genetic material. Newborn Amazon mollies were placed in three different experimental setups: In the first treatment the animals were kept individually from and under identical conditions from birth.

In two other treatments the fish lived for one or three weeks, respectively, in groups of four individuals and were then later separated. After seven weeks, the researchers examined all the Amazon mollies to determine whether and how the individual fish differed in activity and exploratory behavior.

Distinct personality differences

"We were very surprised to find such distinct personality differences in genetically identical animals that grew up under nearly equal environmental conditions", says Dr. David Bierbach, behavioral ecologist at the IGB and one of the two leading authors of the study. The fish which developed initially in small groups, also showed behavioral differences of nearly the same degree - no matter whether the development phase with social interactions lasted one or three weeks.

Study indicates that individuality may be inevitable

"Our results suggest that other factors must influence the development of personality in a more substantial way than previously thought: potentially minute differences in environmental conditions, which are impossible to remove completely from any experiment, or potentially epigenetic processes, i.e. random changes of chromosomes and gene functions. Altogether our results suggests that these factors deserve closer inspection as causes of personality variation in future work", explains behavioral ecologist Dr. Kate Laskowski. The IGB study suggests that the development of individuality in vertebrate animals may be an inevitable and ultimately unpredictable result of the developmental process.

Study:
Bierbach, D., Laskowski, KL., Wolf, M. (2017) Individual differences in behaviour of clonal fish arise despite near-identical rearing conditions. Nat. Commun. 8, 15361 doi: 10.1038/ncomms15361

Contact persons:

Dr. David Bierbach
Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)
Müggelseedamm 310, 12587 Berlin
+49 (0) 30 64181 615
bierbach@igb-berlin.de

Dr. Kate Laskowski
Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)
Müggelseedamm 310, 12587 Berlin
laskowski@igb-berlin.de
+49 (0) 30 64181 716

Further information on the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB):

http://www.igb-berlin.de

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V., an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Johannes Graupner | idw - Informationsdienst Wissenschaft

Further reports about: Amazon IGB Leibniz-Institut ecosystems environmental conditions

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>