Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk researchers develop safe way to repair sickle cell disease genes

08.12.2011
New gene editing technique would heal patients with their own cells

Researchers at the Salk Institute for Biological Studies have developed a way to use patients' own cells to potentially cure sickle cell disease and many other disorders caused by mutations in a gene that helps produce blood hemoglobin.


Salk researchers reprogrammed skins cells taken from a sickle cell disease patient into induced pluripotent stem cells (iPSCs), immature cells capable of developing into any type of bodily tissue. To assure that the skin cells were in fact reprogrammed into stem cells, the researchers coaxed them into becoming muscle cells, indicated by the presence of muscle-specific protiens (red) in this image. The cell nuclei - the central compartments that contain the DNA - are seen in blue. Credit: Courtesy of Salk Institute for Biological Studies

The technique uses cells from a patient's skin to generate induced pluripotent stem cells (iPSCs), which are capable of developing into various types of mature tissues -- including blood. The scientists say their method, which repairs the beta-globin gene (HBB), avoids gene therapy techniques that can introduce potentially harmful genes into cells.

The new technique, which will soon be tested as a therapy in animals, also appears to be much more efficient than other methods tested to date, the researchers say.

"Our findings set the stage for the development of iPSC-based therapies for devastating genetic disorders such as sickle cell disease," says the study's principle investigator, Juan Carlos Izpisua Belmonte, a Salk professor and head of the Gene Expression Laboratory.

Sickle cell disease is a group of inherited blood disorders caused by genetic mutations in the HBB gene, resulting in abnormal hemoglobin, the iron-containing protein that normally allows blood cells to carry oxygen. This causes red blood cells to become hard and sticky and resemble a curved farm tool called a "sickle." In the two leading disorders caused by HBB mutations, sickle cell anemia and beta thalassemia, red blood cells can't effectively carry oxygen.

Symptoms of sickle cell disease include swelling of the hands and feet, pain due to clogging of blood vessels, anemia and stroke.

The disorders are most common among people of African, Mediterranean and Middle Eastern decent. One in every 500 African Americans and one in every 30,000 Hispanic Americans are born with sickle cell disease, according to the Centers for Disease Control and Prevention.

The disease can be cured with stem cell or bone marrow transplants, but there is a high risk that recipients of transplants will reject the donated marrow or cells, which can result in serious side effects and even death.

The Salk researchers, which include co-first authors Mo Li and Keiichiro Suzuki, both research associates in Belmonte's laboratory, set out to devise a safe method to use iPSCs to correct the HBB gene in patients who have defective copies of the gene.

Because the iPSCs come from a patient's own body, they should carry less risk for transplant rejection. Also, about 500 other disease-causing mutations have been identified in the HBB gene, so correcting the gene could potentially cure a multitude of HBB-related diseases worldwide.

However, traditional iPSC generation and gene therapy techniques have proven to be potentially unsafe, according to the researchers.

Many have used viruses to convert adult cells to stem cells and to carry a normal HBB gene to infect and repair hematopoietic stem cells - stem cells that give rise to all blood cells.

But when these repaired stem cells are given back to patients, they can include transgenes - unwanted genes that have become inserted into the host genome and disrupt the normal function of DNA. The technique is also inefficient, correcting only a small percentage of gene mutations, and transplantation success has proven rare in clinical trials testing gene therapy to treat beta thalassemia.

"We wanted to fix the mutation in such a way that it does not leave any unwanted traces in a patient's genome," Suzuki says.

To do that, the researchers used a two-step approach. First, they took adult skin cells from a patient with an HBB mutation that causes sickle cell disease. They used six genes to coax these cells to revert to iPSCs, which could then be developed into blood cells. The genes were introduced into the cells using a technique that avoids the use of viruses and insertion of transgenes into the cells' genome.

Their next step was to repair the HBB gene mutation in the stem cells. To swap the defective gene with a normal copy in the iPSCs, the investigators used a modified adenovirus (common cold virus) that, unlike viruses used in other methods, does not replicate itself in the body and does not alter the host cells' DNA. The viral genes were deleted and replaced with a DNA sequence that contained a normal HBB gene.

The modified virus then delivered the new genetic material inside the iPSCs, where the DNA region containing the broken gene was replaced with the sequence containing the normal gene. "It happens naturally, working like a zipper," Li says. "The good gene just zips in perfectly, pushing the bad one out."

By replacing a relatively large region of DNA, the technique allows the scientists to fix many gene mutations at once, which suggests the method might provide a way to treat hundreds of types of HBB-related diseases. The correction of the mutant HBB gene was also highly efficient and the research team conducted multiple tests to ensure no errant genes were integrated into the genome.

The Salk scientists now plan to make blood cells from the repaired stem cells and test their effectiveness in animals. If successful, this may lead to therapies for humans in which a patient's stem cells will be reverted into iPSCs, then genetically repaired and transplanted back into the bone marrow of the same patient. If successful, the bone marrow will then produce all new blood cells, including normal hemoglobin.

If the technique proves effective, the researchers say, it might be used for treating other types of diseases caused by single gene mutations.

The study was funded by grants from the G. Harold and Leila Y. Mathers Charitable Foundations, Sanofi-Aventis, Ellison Medical Foundation, The Leona M. and Harry B. Helmsley Charitable Trust, MICINN and Fundacion Cellex (JCIB). The study appears in the December 2011 issue of Cell Research.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>