Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk discovery may lead to safer treatments for asthma, allergies and arthritis

20.12.2011
Scientists find link between biological clock and sugar metabolism

Scientists have discovered a missing link between the body's biological clock and sugar metabolism system, a finding that may help avoid the serious side effects of drugs used for treating asthma, allergies and arthritis.

In a paper published last week in Nature, scientists at the Salk Institute for Biological Studies report finding that proteins that control the body's biological rhythms, known as cryptochromes, also interact with metabolic switches that are targeted by certain anti-inflammatory drugs.

The finding suggests that side effects of current drugs might be avoided by considering patients' biological rhythms when administering drugs, or by developing new drugs that target the cryptochromes.

"We knew that our sleep and wake cycle are tied to when our bodies process nutrients, but how this happened at the genetic and molecular level was a complete mystery," says Ronald M. Evans, a professor in Salk's Gene Expression Laboratory, who led the research team. "Now we've found the link between these two important systems, which could serve as a model for how other cellular processes are linked and could hold promise for better therapies."

Glucocorticoids are steroid hormones that occur naturally in the body and help control the amount of sugar in a person's blood, so that nutrient levels rise in the morning to fuel daily activities and fall again at night. They function in cells by interacting with glucocorticoid receptors, molecular switches on the outside of the nucleus, which Evans first discovered in 1985.

Glucocorticoids also play a role in regulating inflammation and are used as anti-inflammatory drugs for diseases caused by an overactive immune system, such as allergies, asthma and rheumatoid arthritis. They are also used to treat inflammation in cancer patients.

However, because of their role in sugar metabolism, the steroids can disrupt a person's normal metabolism, resulting in dangerous side effects, including excessively high blood sugar levels, insulin resistance and diabetic complications.

The Salk researchers may have found a way around these side effects by discovering a new function for cryptochromes 1 and 2, proteins that were previously known for their function in the biological clock.

The cryptochromes serve as breaks to slow the clock's activity, signaling our biological systems to wind down each evening. In the morning, they stop inhibiting the clock's activity, helping our physiology ramp up for the coming day.

In their new study on mouse cells, Evans and his colleagues made the surprising discovery that cryptochromes also interact with glucocorticoid receptors, helping to regulate how the body stores and uses sugar.

"We found that not only are the crytopchromes essential to the functioning of the circadian clock, they regulate glucocorticoid action, and thus are central to how the clock interacts with our daily metabolism of nutrients," says Katja A. Lamia, an assistant professor at The Scripps Research Institute and former post-doctoral researcher in Evan's laboratory at Salk.

Mouse cells function much like human cells, so the findings could have important implications for treatment of autoimmune diseases and cancer. By taking into account the daily rise and fall of cryptochrome levels, the scientists say, doctors might be able to better time administration of glucocorticoid drugs to avoid certain side effects related to sugar metabolism.

The discovery also raises the possibility of developing new anti-inflammatory drugs that avoid some side effects by targeting cryptochromes instead of directly targeting the glucocorticoid switches.

More broadly, Evans says, the study may help explain the connection between sleep and nutrient metabolism in our bodies, including why people with jobs that require night work or erratic hours are at higher risk for obesity and diabetes.

"Disrupting the normal day-night cycle of activity may prevent a person's biological clock from synchronizing correctly with their daily patterns of nutrient metabolism," Evans says. "As a result, the body might not store and process sugar normally, leading to metabolic disease."

The study was funded by the National Institutes of Health, the Glenn Foundation for Medical Research, the Leona M. and Harry B. Helmsley Charitable Trust and the Life Sciences Research Foundation.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>