Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018

In the analysis of the human genome, one question researchers have so far left unanswered is how to differentiate the variants of a gene inherited from the mother and father. Such information would increase the likelihood of treating certain diseases successfully. The so-called third generation of sequencing technologies is now making this possible. One of the most important tools for solving this complex puzzle is special software developed by scientists at the Center for Bioinformatics at Saarland University. The renowned journal “Nature Communications” has reported twice on their research.

Humans have 46 chromosomes. These carry the genes and define the genetic material, the so-called genome. So that the number of chromosomes does not double with each generation, only 23 chromosomes are included in male and female germ cells, which merge in a fertilized egg cell to form a new life. Such a half-set of chromosomes is designated as “haploid.”


Tobias Marschall, Professor of Bioinformatics

Tobias Schwerdt

“Which gene variants I receive from my father or mother can decide whether I get sick, and also how I can best be medically treated,” explains Tobias Marschall, Professor of Bioinformatics at Saarland University. There he leads the group “Algorithms for Computational Genomics” at the Center for Bioinformatics.

Being able to analyze which gene variants were inherited from which parent, and thereby determine the so-called haplotype, is the new quantum leap for the sequencing of the human genome. Two developments are crucial for this: First, the so-called third-generation sequencing techniques, established by firms like Oxford Nanopore, 10x Genomics and Pacific Biosciences, deliver a different type of gene data.

“Through them, we now get much longer gene snippets and can now finally put into practice what we have long studied in theory,” says Marschall. He is actively involved in the second requirement: He develops the computational methods that make the mountains of genetic data manageable. Part of this has made its way into the software, named “WhatsHap,” that Marschall developed with his colleagues.

“Imagine an extremely difficult puzzle. With WhatsHap we solve two of them at the same time,” Marschall describes WhatsHap's approach. The bioinformatician is convinced that with the help of such programs, in the foreseeable future the determination of one's haplotype will become a routine examination in hospitals, just as identification of the blood group is today. He considers the two articles in the journal “Nature Communications” the first milestone for this.

The German Research Foundation (DFG) also confirmed the relevance of this work by announcing, last week, the financial support of two projects related to WhatsHap. In the first project, Professor Marschall will work together with Professor Gunnar Klau from the Heinrich Heine University of Duesseldorf on even more powerful computational methods for haplotyping.

In the second project, the DFG is supporting the long-term maintenance of the WhatsHap software as part of the “Sustainability of Research Software” initiative, paving the way for its use in everyday clinical practice. A total of 800,000 euro is available for these projects, of which 550,000 will go to Saarland University to create new positions for researchers and developers.

Background: Saarland Informatics Campus (SIC)

The core of the Saarland Informatics Campus is the Department of Computer Science at Saarland University. In the immediate vicinity, seven other world-renowned research institutes conduct research on the campus. Along with the two Max Planck Institutes for Informatics and for Software Systems, these are the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the CISPA Helmholtz Center i.G. and the Cluster of Excellence “Multimodal Computing and Interaction” (MMCI).

Press photos: www.uni-saarland.de/pressefotos

Questions can be directed to:
Jun.-Prof. Dr. Tobias Marschall
Center for Bioinformatics
Saarland Informatics Campus (SIC)
Tel.: +49 681 302 70880
E-mail: marschall@cs.uni-saarland.de

Editor:
Gordon Bolduan
Competence Center Computer Science Saarland
Saarland Informatics Campus (SIC)
Tel.: +49 681 302 70 741
E-mail: bolduan@mmci.uni-saarland.de

Weitere Informationen:

http://dx.doi.org/10.1038/s41467-017-01389-4
http://dx.doi.org/10.1038/s41467-017-01343-4

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>