Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So that’s why we’re allergic to sun creams

11.10.2010
What happens to sunscreens when they are exposed to sunlight? And how is the skin affected by the degradation products that form? This has been the subject of research at the University of Gothenburg and Chalmers University of Technology that will be presented at the upcoming dermatologist conference in Gothenburg.

A growing hole in the ozone layer and a change in sunbathing habits have brought an increase in the number of cases of skin cancer worldwide. One way of dealing with this has been to advocate sunscreens, though greater use of these products has triggered an increase in contact allergy and photocontact allergy to sun protection products.

“We know that sun creams pass through the skin into our bodies, but we don’t know what effects they have on us,” says Isabella Karlsson, doctoral student at the Department of Chemistry at the University of Gothenburg’s Faculty of Science. “Many of them actually break down in the presence of sunlight. We therefore wanted to look at what can happen to the chemical sun protection agents when exposed to UV rays, and how the degradation products that form affect the skin.”

In their study, the researchers have come up with an explanation of what happens during this process.
“Arylglyoxales, one of the degradation products, turned out to be highly allergenic,” says Karlsson. “Which could explain why some people are allergic to creams that contain dibenzoylmethanes, one of the UVA-absorbing substances in sun creams.”


This has made for a better understanding of the mechanism behind photocontact allergy, which could lead to a product that does not cause allergy, and could determine which sun creams people are most likely to be sensitive to.

But their discovery is already having an impact. The healthcare system has long found it difficult to test patients with suspected photocontact allergy, but thanks to the study a new test is being developed.
“We’re just starting to work with various dermatology clinics on assessing the test,” explains Karlsson. “So more patients will be able to find out whether they have photocontact allergy, which could help them in their everyday lives and reduce the burden on the healthcare system.”

PHOTOCONTACT ALLERGY AND CONTACT ALLERGY

A photocontact allergic reaction results from the chemical alteration of sunscreens by sunlight, with the body’s immune system then responding with an allergic reaction. The reaction is uncommon, and the cause of the condition is generally sunscreens. The symptoms are eczema-like rashes that can itch. The treatment is to avoid the substance that causes the allergy.
For more information, please contact: 

Isabella Karlsson
tel. +46 31 786 91 08, e-mail: isabella.karlsson@chem.gu.se
Anna Börje
tel. +46 31 786 90 12, e-mail: aborje@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>