Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019

New insights into the mechanisms of changes in red blood cells subjected to various types of effects will help to develop optimal treatment regimens for patients with atherosclerosis, coronary heart disease and arterial hypertension

Various stress effects make an integral part of modern life, and their minimization is of particular relevance. Currently, much attention is being paid to the study of the structural-metabolic and functional status of erythrocytes, since they serve as a kind of "cell dosimeter" to signal stress reactions and the action of facultative and obligatory exogenous and endogenous factors that cause various diseases.


Erythrocyte in the process of adaptation.

Credit: Lobachevsky University


Spherocyte -- pre-hemolytic state of the cell.

Credit: Lobachevsky University


Erythrocytes in pathology and stress.
Credit: Lobachevsky University

Erythrocytes (red blood cells) make up about 40-45% of the total blood volume of an adult. They are among the most numerous cells in the human body accounting for approximately 10% of the total cell volume of an adult organism. Under the action of oxidative stress, somatic shock, various medicinal substances, xenobiotics and pathologies, erythrocytes may be subjected to damage that triggers their programmed death (eryptosis).

The deterioration of the erythron state plays a significant role not only in the specific gas transport function, but also in the regulation of the acid-base state, the water-electrolyte balance, the micro-rheological status of the blood, in immune reactions, in the binding and transfer of infection agents and medicinal substances.

According to Anna Deryugina, Head of Department of Physiology and Anatomy at the Institute of Biology and Biomedicine, Lobachevsky University of Nizhny Novgorod, the study of the state of erythrocytes and early diagnosis of their changes is very important for analyzing the state of microcirculation.

Microvasculature disorders are characteristic of a number of diseases, including atherosclerosis, coronary heart disease, and arterial hypertension. Further understanding of the mechanisms behind the changes in the state of erythrocytes under various types of effects will enable the development of optimal treatment regimens for patients and the implementation of timely preventive measures.

A group of scientists from Nizhny Novgorod and Yekaterinburg is currently searching for new methods to analyze the state of cells. One of the promising modern approaches allowing a detailed study of the morphological and functional state of cells is the method of phase-modulation laser interference microscopy, which is used to study the dynamics of changes in the shape of the cell and its structure, as well as the functional state of erythrocytes.

"In our studies, visualization of erythrocytes using phase-modulation laser interference microscopy showed a change in the erythrocyte nanostructure under stress, which was accompanied by the emergence of morphologically altered cells. By constructing phase pictures of erythrocytes (3D models), we were able to estimate the intensity level of oxidative processes, which are inevitable companions of stress," notes Anna Deryugina.

In the course of the research, the relationship between changes in the erythrocyte morphology and modification of the membrane protein-lipid structure was shown, which manifested itself in a change in the electronegativity of the erythrocyte surface. In turn, the analysis of the electrophoretic mobility of erythrocytes, depending on the direction of the process, made it possible to judge about the development of stress with an increase in cytotoxicity or about adaptive changes in the body with genetic damage repair.

"Thus, the analysis of the electrokinetic characteristics of erythrocytes and their visualization can provide a diagnostic criterion for the homeostasis of the organism as a whole. In other words, by using phase-modulation laser interference microscopy, one can quickly visualize membrane deformations and evaluate the state of the cells. This method can be used to diagnose and study the functioning of erythrocytes," concludes Anna Deryugina.

Scientists note that erythrocyte visualization can become a form of rapid diagnosis of the body's condition that can be used successfully in clinical laboratories.

Media Contact

Nikita Avralev
pr@unn.ru

http://www.unn.ru/eng/ 

Nikita Avralev | EurekAlert!

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>