Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018

A chemist from RUDN was the first to use catalysts with ruthenium nanoparticles to obtain hydrogen under the influence of visible light and UV radiation. In the future, such catalysts may be used for large-scale production of hydrogen fuel under the influence of sunlight. The results of the study were published in Applied Catalysis B: Environmental.

Photochemical reactions are one of the most eco-friendly ways of producing "green fuel". They don't consume a lot of energy for heating the raw materials or supporting high pressure levels. To maintain the speed of the reaction one needs only light and photocatalysts.


The chemists monitored the influence of a titanium-dioxide based ruthenium nanocatalyst on the emission of hydrogen from a methanol-water mixture.

Credit: Allen Dressen

Photocatalysts based on platinum, gold, and palladium are highly efficient in such photochemical reactions as hydrogen extraction from biomass derivatives, such as alcohols. However, these metals are expensive, therefore the scientists are in search of cheaper photocatalysts.

Together with their Spanish colleagues, RUDN chemists studied the photocatalytic activity of titanium dioxide enriched with ruthenium particles. It was the first time they were used to obtain hydrogen. The chemists monitored the influence of a titanium-dioxide based ruthenium nanocatalyst on the emission of hydrogen from a methanol-water mixture.

The team studied four catalysts (with 1%, 2%, 3%, and 5% ruthenium content), and each of them was tested in two types of reactions - in the presence of visible light and UV radiation. Before that the systems of titanium dioxide and ruthenium were rarely used, therefore it was important to characterize their composition and optical properties, including quantum efficiency.

It indicates the photosensitivity of a material and is calculated as a ratio of the total number of photons causing the formation of free electrons in a materials and the total number of absorbed photons. This is the main parameter used to compare the photocatalytic activity of substances.

Experiments have shown that the activity of ruthenium-containing photocatalysts under UV radiation is comparable to platinum and palladium analogs. The quantum efficiency of platinum or palladium based compounds calculated on the basis of other studies makes up from 1.9% to 5.1%, and the results of ruthenium photocatalysts stay within this range.

The best value (3.1%) was calculated for the system with 3% ruthenium content. Taking into account the cheapness of ruthenium catalysts, it makes them promising for industrial use. The activity of ruthenium catalysts under visible light was quite low -the quantum efficiency did not exceed 0.6%, but the authors expect it to increase under sunlight up to 1.1%. The scientists have already started verifying this hypothesis.

"Our catalysts based on titanium dioxide and ruthenium appeared to be universal systems and helped us obtain hydrogen in sufficient quantities both under the influence of UV light and visible light,' explains Raphael Luke, director of the Center for Molecular Design and Synthesis of Innovative Compounds for Medicine, and a visiting scholar at RUDN.

"Having modelled the reaction between light and substance and calculated the quantum efficiency of all our samples, we understood that the key role in the catalyst's activity was played by the inter-reaction between ruthenium and titanium dioxide particles, especially by the concentration of ruthenium particles and possibly its compounds with oxygen on the surface of the material. The exact mechanism of this phenomenon is yet to be discovered. We continue our studies and are currently experimenting with obtaining hydrogen under sunlight in Spain and Russia."

###

The team included scientists from the University of Cordoba and the Institute for Catalysis and Petrochemistry (Spain). The work was supported by the 5-100 program.

Media Contact

Valeriya V. Antonova
antonova_vv@rudn.university

http://eng.rudn.ru/ 

Valeriya V. Antonova | EurekAlert!
Further information:
https://www.sciencedirect.com/science/article/pii/S0926337318306544
http://dx.doi.org/10.1016/j.apcatb.2018.07.046

Further reports about: Titanium dioxide photocatalysts photons platinum titanium dioxide visible light

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>