Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting round gene loss

01.11.2010
A naturally occurring back-up system in plants to produce metabolites compensates for experimentally induced gene loss

Genes ‘knocked out’ experimentally in metabolic networks of the model plant species, Arabidopsis thaliana, are compensated for by duplicate genes or alternative synthetic pathways, according to research led by Kousuke Hanada of the RIKEN Plant Science Center, Yokohama1.

Gene knockouts often have no obvious effects on an organism’s biological characteristics or ‘phenotype’, because their function is compensated for by duplicate genes or alternative pathways allow the effects of gene loss to be circumvented.

For metabolic products, studies on these mechanisms have been limited to yeast. Hanada’s team therefore assessed the relative importance of these mechanisms in Arabidopsis. “Arabidopsis suited our purposes beautifully because many gene knockout mutants have been generated and many of its metabolic networks are known,” explains Hanada.

To study the robustness of Arabidopsis metabolic networks to gene loss the researchers knocked out individually some 2,000 highly expressed genes and then quantified 35 metabolic products in the seeds of the mutant plants by high-throughput analysis.

They compared what happened to production of metabolites when genes with and without duplicates were knocked out. The metabolites assessed included 17 essential amino acids (primary metabolites) found in all organisms, and 18 secondary metabolites called glucosinolates produced specifically by Arabidopsis and its relatives.

Knocking out either single-copy genes or genes with only distantly related ‘duplicates’ tended to have larger metabolic effects than those caused by knocking out genes having closer copies resulting from more recent gene duplication events. “Only recently duplicated genes appear to play a significant role in functional compensation of metabolites in Arabidopsis,” says Hanada.

By analyzing the structure of the Arabidopsis metabolic network, the researchers found that primary metabolites are more often synthesized by alternative biochemical pathways than are secondary metabolites.

Primary metabolites are more likely than secondary metabolites to be essential for plant survival. Surprisingly, however, the researchers found that duplicate genes more often compensated functionally for experimentally induced gene loss in the synthesis of secondary metabolites than in that of primary metabolites. This contrasted with their previous work that showed that, in general, more severe phenotypic effects in Arabidopsis tend to be better compensated for by gene duplication than less severe effects2.

Hanada suggests that the existence of multiple alternative pathways for synthesizing primary metabolites makes these particular Arabidopsis networks highly robust to the loss of individual genes.

“Our findings shed valuable new light on the gene–phenotype relationship, laying the groundwork for new theoretical models in systems biology,” says Hanada.

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science CenterJournal information

1. Hanada, K., Sawada, Y., Kuromori, T., Klausnitzer, R., Saito, K., Toyoda, T., Shinozaki, K., Li, W-H. & Hirai, M.Y. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Molecular Biology and Evolution Advance Access, published 24 August 2010 (doi: 10.1093/molbev/msq204).

2. Hanada, K., Kuromori, T., Myoga, F., Toyoda, T., Li, W-H. & Shinozaki, K. Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis. Genome Biology and Evolution 1, 409–414 (2009).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6433
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>